TS3.9 | Seismic and aseismic deformation on seismogenic faults
Seismic and aseismic deformation on seismogenic faults
Co-organized by EMRP1/SM4
Convener: Audrey Bonnelye | Co-conveners: Jorge Jara, Luca Dal Zilio, Sylvain Michel
Orals
| Wed, 26 Apr, 14:00–17:55 (CEST)
 
Room -2.91
Posters on site
| Attendance Thu, 27 Apr, 10:45–12:30 (CEST)
 
Hall X2
Posters virtual
| Attendance Thu, 27 Apr, 10:45–12:30 (CEST)
 
vHall TS/EMRP
Orals |
Wed, 14:00
Thu, 10:45
Thu, 10:45
Tectonic faults accommodate plate motion through various styles of seismic and aseismic slip spanning a wide range of spatiotemporal scales. Understanding the mechanics and interplay between seismic rupture and aseismic slip is central to seismotectonics as it determines the seismic potential of faults. In particular, unraveling the underlying physics controlling these styles of deformation bears a great deal in earthquakes hazards mitigation especially in highly urbanized regions. We invite contributions from observational, experimental, geological and theoretical studies that explore the diversity and interplay among seismic and aseismic slip phenomena in various tectonic settings, including the following questions: (1) How does the nature of creeping faults change with the style of faulting, fluids, loading rate, and other factors? (2) Are different slip behaviors well separated in space, or can the same fault areas experience different failure modes? (3) Is there a systematic spatial or temporal relation between different types of slip?

Orals: Wed, 26 Apr | Room -2.91

Chairpersons: Audrey Bonnelye, Luca Dal Zilio, Sylvain Michel
14:00–14:20
|
EGU23-10664
|
ECS
|
solicited
|
Highlight
|
On-site presentation
Sara Beth Cebry, Chun-Yu Ke, Srisharan Shreedharan, Chris Marone, David Kammer, and Gregory McLaskey

Natural earthquakes occur in clusters or sequences that arise from complex triggering mechanisms, but direct measurement of the mechanisms responsible for complex temporal sequences and delayed triggering is rarely possible. A central question involved whether delayed triggering is due to slow slip and stress transfer or local weakening/fatigue processes such as stress corrosion. We investigate the origins of this complexity and its relationship to fault heterogeneity using a biaxial loading apparatus with an experimental fault that has two dominant seismic asperities. The fault is composed of a 5 mm layer of quartz powder, a velocity weakening material common to natural faults, sandwiched between 760 mm long polymer blocks that deform similar to the way 10 meters of rock would behave. Due to the higher local normal stress and the free surface boundary condition on the sample ends, the sample behaves like two asperities, one at each end, that can fail independently. As the quartz powder was continuously sheared, the friction properties changed, and we observed a transition from steady sliding to periodic repeating earthquakes that transitioned into aperiodic and complex sequences of fast and slow events. There is also reason to believe that friction properties evolved differently on the higher normal stress asperities and made them more unstable than the center part of the laboratory sample. Sequential ruptures on the two different asperities were linked via migrating slow slip which resembles creep fronts observed in numerical simulations and on tectonic faults. The propagation velocity of the creep fronts ranged from 0.1 to 10 m/s, which is broadly consistent with the velocity of slow slip fronts inferred from migrating tectonic tremor sources. Utilizing both local stress measurements and numerical simulations, we observe that the speed and strength of creep fronts are highly sensitive to fault stress levels left behind by previous earthquakes and may serve as on-fault stress meters.

How to cite: Cebry, S. B., Ke, C.-Y., Shreedharan, S., Marone, C., Kammer, D., and McLaskey, G.: Complex laboratory earthquake sequences show asperity interactions through creep fronts and illuminate the mechanics of delayed earthquake triggering, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10664, https://doi.org/10.5194/egusphere-egu23-10664, 2023.

14:20–14:30
|
EGU23-7118
|
On-site presentation
Corentin Noël, Carolina Giorgetti, Marco M. Scuderi, Cristiano Collettini, and Chris Marone

Large earthquakes take place on mature faults with hundreds of meters to kilometres of cumulative slip. At shallow depths, the fault zone is generally composed of non-cohesive rock wear products, often referred to as gouge. Seismic and aseismic slip occur in this fault gouge and fracture/brecciation of the wall rock and damage zone can add to the fault gouge as part of the wear process. Gouge thickness generally increases linearly with the cumulative fault shear displacement and laboratory work shows that gouge tends to stabilize fault frictional stability. Previous works show that frictional stability of simulated fault gouge varies as a function of shear displacement. The stability evolution is interpreted as a consequence of the degree of shear localisation within the simulated fault gouge: the more the deformation is localized, the more the fault slip is unstable. This implies that for bare rock surfaces, unstable behaviour is expected as the deformations are forced to be localized at the interface between the two sheared surfaces.

On natural faults at large shear displacement (or for faults having a high gouge production rate), a competition must take place between 1) the localization of the deformation at rock-on-rock surfaces, 2) the delocalization of deformation due to gouge production and wall rock brecciation, 3) fault zone lithification and frictional healing and 4) shear localization within the gouge and wear material. The competition and interaction between these phenomena are modulated by cumulative fault slip, temperature and fluid chemistry. In turn, this competition may influence the frictional stability of faults with increasing shear displacement, and thus, their potential seismic activity.

To characterise the influence of shear displacement on fault stability, constant velocity and velocity step experiments were performed to large displacement. Two initially intact rocks were chosen as starting material: a high porosity Fontainebleau sandstone and a low porosity quartzite. These samples represent very different resistances to abrasion (i.e., wear production with slip) for the same initial mineral composition (< 95% quartz), which allows us to investigate wear and wear rate on fault stability. Additionally, simulated quartz gouge was tested for comparison. Mechanical data are analysed within the rate-and-state framework, and post-mortem microscopic analyses of the sample were performed. For initially bare surface experiments a threshold shear displacement is required to transition from stable to unstable sliding. Stick-slip events (laboratory earthquakes) evolve systematically as a function of fault zone shear displacement. The inversion of the rate-and-state parameters shows that shear displacement has a dominant influence on both (a-b) and Dc. For all the faults tested, (a-b) decreases with increasing shear displacement. For high wear rates and simulated gouge, Dc decreases with increasing shear displacement. However, for low wear rate faults, Dc is constant within the tested shear displacement. These results demonstrate that, under the tested boundary conditions, fault stability varies systematically with fault maturity and in particular that shear displacement and strain localization are the dominant parameters controlling fault slip stability.

How to cite: Noël, C., Giorgetti, C., Scuderi, M. M., Collettini, C., and Marone, C.: Fault stability transition with slip and wear production: laboratory constraints, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7118, https://doi.org/10.5194/egusphere-egu23-7118, 2023.

14:30–14:40
|
EGU23-5485
|
ECS
|
On-site presentation
|
Federico Pignalberi, Carolina Giorgetti, Elisa Tinti, Nathalie Casas, Chris Marone, Cristiano Collettini, and Marco Maria Scuderi

In the last decades, it has been observed that faults can slip both by slow aseismic creep and seismic events (i.e., earthquakes). Between these two slip modes, a wide variety of fault slip behavior can be observed, including low-frequency earthquakes, slow slip events and tremors. This wide variety of slip modes can radiate seismic energy at different frequencies whose content may be linked to the physical mechanisms at play. 

In the laboratory, it is possible to reproduce the entire spectrum of fault slip modes by modulating the loading stiffness of the apparatus depending on the critical fault rheologic stiffness (i.e. k/kc). This technique allows us to study, under controlled laboratory conditions, the acoustic signature of different fault slip modes to infer the physical mechanisms at their origin. To shed light on the nucleation mechanisms and seek for reliable precursors to failure of different slip modes, we performed friction experiments on powders that differ for granulometry and grain shape (i.e., glass beads with a grainsize < 150 µm; and quartz powders MinUSil with an average grain size of 10.5 µm),  to simulate fault gouge.  The experiments were conducted in a double direct shear configuration, instrumented with an array of piezoelectric sensors to record continuously Acoustic Emissions (AEs) at high recording rate (~10MHz). The experiments are performed at a constant displacement rate of 10 µm/s and using a spring to reduce the apparatus stiffness k, to match the critical fault rheological stiffness (kc). Following this procedure we  obtain slow slip events (i.e., k = kc) and fast events (i.e. k<kc). The continuous recording of the AE (a proxy for seismicity) during the seismic cycle shows an increase in the acoustic energy release while approaching failure, which is related to changes in fault physical properties associated with grain sliding/fracturing. This behavior is reflected in a systematic variation of the b-value approaching failure.

Through this work, we focus on the frequency content of AEs during the laboratory earthquakes to understand how different slip modes radiate acoustic energy. Indeed, we observe two orders of magnitude differences in frequencies associated with AEs in MinUSil and AEs in Glass Beads. The analysis of this frequency content can add important information on the deformation mechanism of fault gouge at the microscale and the size of the slip patch during laboratory earthquakes.

How to cite: Pignalberi, F., Giorgetti, C., Tinti, E., Casas, N., Marone, C., Collettini, C., and Scuderi, M. M.: Acoustic signatures of slow and fast earthquake: insights from laboratory experiments on simulated fault gouge, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5485, https://doi.org/10.5194/egusphere-egu23-5485, 2023.

14:40–14:50
|
EGU23-4151
|
ECS
|
On-site presentation
Weiwei Shu, Olivier Lengliné, and Jean Schmittbuhl

The multi-scale roughness of a fault interface is responsible for multiple asperities that establish a complex and discrete set of real contacts. Since asperities control the initiation and evolution of the fault slip, it is important to explore the intrinsic relationships between the collective behavior of local asperities and the frictional stability of the global fault system. However, such a mechanism is still elusive due to the difficulty of imaging an exhaustive spatiotemporal variability of a fault interface at depth, and the limited computational efficiency of the numerical models with heterogeneity over a large time and space domain. Here we propose a novel analog experimental approach, which allows us to capture the temporal evolution of the slip of each asperity on a faulting interface. We link the collective behavior of asperities with the mechanical response of the whole fault interface. We find that many destabilizing events at the local asperity scale occurred in the frictional strengthening stage which is conventionally considered as the stable regime of a fault. We compute the interseismic coupling to evaluate the slipping behaviors of asperities during the fault strengthening stage. Based on a high-resolution topographical map of the fault surface, we evidence that the interseismic coupling is not only dependent on the normal load and the peak height of asperity but also can be affected by the interactions between asperities through the embedding soft matrix. Furthermore, we quantify the spatiotemporal interactions of asperities as slip episodes. The significant characteristics and scaling-laws observed in natural earthquakes, such as the magnitude-frequency distribution and the moment-duration scaling, are reproduced through the catalog of slip episodes to demonstrate the effective upscaling. We give geophysical implications for the physics and mechanics of natural faults and discuss some limitations of our experimental setup.

How to cite: Shu, W., Lengliné, O., and Schmittbuhl, J.: Collective behavior of asperities before large stick-slip events, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4151, https://doi.org/10.5194/egusphere-egu23-4151, 2023.

14:50–15:00
|
EGU23-2602
|
On-site presentation
Matt Ikari

Since the relatively recent discovery of slow slip events (SSEs), the nature of the relationship between SSEs and ordinary earthquakes has become one of the most important questions in earthquake science.  Specifically, questions as to whether SSEs decrease or increase the likelihood of large-magnitude earthquakes, whether or how slow and fast earthquakes can occur on the same fault patch, and whether SSEs are potential earthquake precursors have important implications for earthquake hazards.

Here, laboratory friction experiments on simulated fault gouges are used to gain insight into the relationship between SSEs and ordinary earthquakes.  The experiments are conducted water-saturated, at room temperature and at low pressure (10 MPa effective normal stress) to simulate the shallow, near-surface portions of major fault zones.  A key feature of these experiments is employing driving velocities as low as 5 cm/yr (1.6 nm/s) to simulate natural far-field tectonic driving rates.  From a larger dataset which includes a wide range of simulated fault gouges, four gouge types exhibited consistent stick-slip and these are analyzed further.  These materials are pyrite, hematite, gypsum, and Carrara marble powders.

Preliminary results show that the pyrite and hematite gouges exhibit small stress drops and increases in sample sliding velocity, interpreted to be SSEs, prior to stick-slips.  The SSEs occur near the peak in friction before the large stick-slip stress drop, suggesting that they are precursors.  In hematite at 5 cm/yr, the precursory SSEs exhibit stress drops on the order of 10’s of kPa and peak slip velocities within an order of magnitude of the driving rate, whereas the stick-slips exhibit stress drops of about 1 MPa and peak slip velocities of up to ~1 mm/s.  The peak stress at which the SSEs occur is within 1% of the peak stress prior to the stick-slip events.  Gypsum and Carrara marble, however, did not exhibit SSEs prior to stick-slips.  The results suggest that both slow and fast slip can occur on the same fault patch under the same conditions, and indicate the possibility that SSEs can be used as earthquake precursors in some cases.  However, the lack of precursory SSEs in the gypsum and marble gouges suggests that precursory SSE behavior is not universal and requires further investigation.

How to cite: Ikari, M.: Slow slip events as stick-slip precursors in laboratory friction experiments on simulated fault gouges, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2602, https://doi.org/10.5194/egusphere-egu23-2602, 2023.

15:00–15:10
|
EGU23-15559
|
On-site presentation
Sohom Ray and Dmitry I. Garagash

The nucleation of earthquakes relies on an interfacial instability that facilitates the transition of a slow fault slip to a faster dynamic rupture. Here, we highlight the scenarios when (rate-weakening) interfaces exhibit a phase of slow aseismic rupture—before slip instability—that propagate large distances compared to the usual nucleation sizes. This aseismic rupture propagation results from rate-weakening interfaces' response to reach a state of steady sliding when forced to slip below steady-state frictional conditions. We numerically simulate the slip cycle—aseismic rupture, instability, and dynamic rupture—driven by prototype loading configurations:

  • Slip dislocation accrues at a constant rate at one end of a finite fault with the other end (a) at the free surface of an elastic half-space and (b) completely locked (buried) in an elastic full-space.
  • Imposed slip dislocation accruing at a constant rate on both ends of a finite fault
  • A localized distribution of shear traction that increases at a constant rate.

All the above loading conditions can permit a slow aseismic rupture along the fault when the fault is initially locked: a state of interfacial slip for which the frictional strength, at the current slip rate, is significantly less than the steady-state frictional strength at the same slip rate. The slow rupture occurs in all the above loading configurations when the fault is initially locked; the subsequent transition to instability, or not, shows a fault-size dependence for configurations 1a and 1b, even when the fault exceeds the usual nucleation sizes. The cut-off fault size that permits instability after aseismic rupture also depends on the friction parameters, the extent of initial contrast from steady-state sliding, and slip conditions towards which aseismic rupture progresses. The remaining loading configurations exhibit instability whenever the fault size exceeds the usual nucleation sizes. Further, we find that slow rupture’s transition to early-stage instability happens through an intermediate breathing (spatiotemporal oscillation) type evolution of slip rate.

How to cite: Ray, S. and Garagash, D. I.: Aseismic rupture on rate-weakening faults before slip instability, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15559, https://doi.org/10.5194/egusphere-egu23-15559, 2023.

15:10–15:20
|
EGU23-7807
|
ECS
|
On-site presentation
Jinhui Cheng, Michelle Almakari, Carlo Peruzzo, Brice Lecampion, and Harsha Bhat

Fault systems have geometrically complex structures in nature, such as stepovers, branches, and roughness. Both geological and geophysical studies indicate that the fault geometry complexities can have a first order effect on spatio-temporally complex slip dynamics. However, a vast majority of models of slip dynamics are conducted on planar faults due to algorithmic limitations. We develop a 3D quasi-dynamic slip dynamics model with Hierarchical matrices to overcome this restriction. The calculation of elastic response due to slip is a matrix-vector multiplication, which can be accelerated by using hierarchical matrices and easily multi-threaded. The computational complexity is reduced from the order of O(N2) to O(NlogN). We cross-validate our code with the SCEC run SEAS benchmark/validation exercise. With this approach, we then explore the role of fundamental geometry complexities and realistic fault geometry on slip dynamics. We also plan to analyse synthetic signals and compare with seismological and geodetic observations.

How to cite: Cheng, J., Almakari, M., Peruzzo, C., Lecampion, B., and Bhat, H.: 3D Quasidynamic cycles accelerated using Hierarchical Matrices: Role of complex fault geometry, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7807, https://doi.org/10.5194/egusphere-egu23-7807, 2023.

15:20–15:30
|
EGU23-13002
|
On-site presentation
Nicolas Brantut and Fabian Barras

During fast slip, fault strength may decrease due to weakening mechanisms linked to constitutive properties of the deformed material (e.g., flash heating, thermal pressurisation), but also due to structural effects driven by changes in strain distribution within the shear zone. Extensive theoretical work on thermally activated weakening mechanisms, such as thermal pressurisation of pore fluids, has shown that strain can spontaneously localise in very narrow zones during rapid shear, which promotes further macroscopic weakening of faults. Here, we develop a multiscale fault model which combines a detailed description of thermal pressurisation of fault gouges within large scale elastodynamic rupture simulations. We show that spontaneous strain localisation inside the fault gouge dramatically changes the dynamics of ruptures, and makes the faults more brittle, i.e., decreases the fracture energy and thus produces faster ruptures. We provide closed-form approximations for the resulting localised width and fracture energy as functions of rupture speed. Our work provides a link between structural observations and earthquake dynamics.

How to cite: Brantut, N. and Barras, F.: Rupture dynamics driven by strain localisation within fault gouges, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13002, https://doi.org/10.5194/egusphere-egu23-13002, 2023.

15:30–15:40
|
EGU23-4225
|
On-site presentation
Yariv Hamiel and Oksana Piatibratova

Transient aseismic deformation is observed using dense geodetic measurements across the northern Jordan Valley Fault segment of the Dead Sea Fault. The fault was creeping until 2013 at a rate of 2.7±0.4 mm/yr. It stopped creeping between 2013 and 2018 and then started creeping again at a similar rate. These transitions between the creep and locked modes of deformation correlate well with the 2013 and 2018 seismic sequences that occurred near the tip of the northern Jordan Valley creeping segment. The creep caused the accumulation of Coulomb stresses near the fault tip, which promoted earthquake nucleation in this region. The 2013 seismic sequence was probably too small to release these stresses, and they were released during the 2018 seismic sequence, which allowed the fault to creep again. We suggest that seismic activity will continue to occur near the tip of this creeping segment.

How to cite: Hamiel, Y. and Piatibratova, O.: Interplay between seismic and aseismic deformation near the tip of a creeping segment: Insights from the northern Jordan Valley segment of the Dead Sea Fault, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4225, https://doi.org/10.5194/egusphere-egu23-4225, 2023.

Coffee break
Chairpersons: Jorge Jara, Luca Dal Zilio, Sylvain Michel
16:15–16:35
|
EGU23-13207
|
solicited
|
Highlight
|
On-site presentation
Diane Rivet, Marie Baillet, Alister Trabattoni, Martijn van den Ende, Clara Vernet, Itzhak Lior, Sergio Barrientos, Anthony Sladen, and Jean-Paul Ampuero

Subduction zones host some of the greatest diversity in seismic and aseismic fault slip behaviors, such as recurrent slow slip, non-volcanic tremors and repeating earthquakes, that are large enough to be measurable at the surface. Our understanding of the mechanisms leading to fault rupture, especially the role of aseismic slip is limited by the sparsity of instrumentation near the nucleation zone, which is predominantly located offshore away from permanent onland seismic networks.

Fiber-optic Distributed Acoustic Sensing (DAS) offers a new opportunity for long-term seismic observation of off-shore active faults by turning existing fiber-optic seafloor telecom cables into dense arrays of seismic and acoustic sensors. We conducted a one-month long DAS experiment on the northern leg of the Concón landing site of the Prat cable belonging to the GTD company. The longitudinal strain rate was recorded every 4m over a 150km-long fiber section at a temporal sampling rate of 125 Hz, which enabled us to measure low magnitude earthquakes and to locate them precisely. The earthquake catalog generated from the DAS data comprises more than 900 seismic events, which greatly extends the existing regional catalog. A preliminary analysis indicates that several seismic sequences are clustered in time and space, which include numerous events that cannot be detected by the onland seismological network. The ABYSS project will deploy this new observation tool continuously over several years, which will offer a new opportunity to better characterize the distribution of the seismicity in time and space, and will provide new constraints to the models of fault behavior during the seismic cycle. Combined with other types of analysis, such as seismic wave velocity changes monitoring at depth, these data will also provide additional constraints on the aseismic deformation of the fault zone.

How to cite: Rivet, D., Baillet, M., Trabattoni, A., van den Ende, M., Vernet, C., Lior, I., Barrientos, S., Sladen, A., and Ampuero, J.-P.: Improving active faults monitoring leveraging submarine telecom fiber optic cables : first results from central Chile, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13207, https://doi.org/10.5194/egusphere-egu23-13207, 2023.

16:35–16:45
|
EGU23-4292
|
ECS
|
On-site presentation
Chi-Hsien Tang, Yunung Nina Lin, Hsin Tung, Yu Wang, Shiann-Jong Lee, Ya-Ju Hsu, J. Bruce H. Shyu, Yu-Ting Kuo, and Horng-Yue Chen

Nearby faults interact with each other through stress fluctuation incurred by seismic rupture, aseismic slip, and viscoelastic flow in the lithosphere. Understanding fault interactions and their temporal variation under different geometry are critical to regional seismic hazard and risk assessments. However, the complex interplay between adjacent faults is often unclear due to insufficient observations of large earthquakes with prolonged recurrence intervals. The 2022 Chihshang earthquake sequence in eastern Taiwan provides unprecedented insights into the interaction between two head-to-head thrust faults during and after a major earthquake. The Chihshang sequence was initiated by an Mw 6.5 foreshock on 17 September, followed by an Mw 7.0 mainshock 7 km to the north and 17 hours later. Based on the coseismic displacements constrained by field survey, optical satellite images, interferometric synthetic aperture radar (InSAR) data, and a dense network of Global Navigation Satellite System (GNSS) measurements, we map the major coseismic rupture on the east-verging Central Range fault (CRF), and the secondary induced slip on the west-verging Longitudinal Valley fault (LVF). The induced slip on the LVF accounts for 9-15% of the total moment release (Mw 7.1). Before the Chihshang earthquake sequence, the seismic hazard along the CRF was much overlooked due to the high seismic activity of the LVF. The 2022 Chihshang earthquake sequence demonstrates for the first time that the CRF is capable of generating earthquakes of Mw 7. The early afterslip primarily took place on the downdip extension of the CRF at great depth, indicating a contribution of ductile deformation there. Incorporating historical earthquake records over the past 120 years, we demonstrate that a rupture on the CRF or LVF reduces the stress level on the other, causing periods of seismic quiescence and an out-of-phase moment release pattern over time between the two faults. These results not only illuminate the fault geometry at the plate suture zone of eastern Taiwan, but also revise the conventional view of the nearby fault interaction. Integrating geometric complexity and fault slip history among adjacent faults in future modeling is essential for assessing realistic seismic hazards in similar structural settings.

How to cite: Tang, C.-H., Lin, Y. N., Tung, H., Wang, Y., Lee, S.-J., Hsu, Y.-J., Shyu, J. B. H., Kuo, Y.-T., and Chen, H.-Y.: Interactions between the dual-verging thrust faults in eastern Taiwan revealed by the 2022 Chihshang earthquake sequence and centennial historical seismicity, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4292, https://doi.org/10.5194/egusphere-egu23-4292, 2023.

16:45–16:55
|
EGU23-4704
|
On-site presentation
Shengji Wei, Zheng-Yang Choong, Chenyu Li, Yukuan Chen, Muksin Umar, Karen Lythgoe, Arifullah Arifullah, and Andrean Simanjuntak

Earthquake is produced by shear dislocation of rocks across the fault, the frictional status and the area of locked/creeping patches on the fault thus govern the size and occurrence of damaging earthquakes. To better understand these fundamental earthquake physics issues, we deployed over 130 short period seismic nodal stations along the plate boundary type Sumatran fault in Aceh region to cover a segment that was reported to be creeping at various depths. We maintained the nodal array deployment from Jan 2020 to July 2021 by recharging the nodes every 35 days. A machine learning based earthquake detection algorithm was applied to the acquired dataset, which results in a high-resolution seismic catalog that has more than 8000 micro-seismic events. These events clearly delineate the subvertical creeping segment of the Sumatran fault and its Seulimeum branch to the northwest. The seismicity on the creeping segment is almost uniformly distributed from 3 to 12 km in depth, confirming the creeping nature of the fault segment as revealed by geodetic observations, but providing a much more accurate depth constraint. In contrast, the Seulimeum fault branch shows a much deeper seismicity at the depth range of 18 to 25 km, indicating the entire upper crust is fully locked. Sharp stepovers are observed along both strike (~10km) and strike-normal (~4km) directions between the seismicity on these fault segments. The creeping segment of the Sumatran fault, as defined by similar earthquake families, agrees well with the lenses of serpentinite, which has much smaller frictional coefficient that facilitates fault creep. Similar earthquake families show ~ km scale lineation along strike of the fault, where repeating earthquake pairs are identified. However, two shallow Mw6 earthquakes occurred on the creeping segment in the last 25 years. In particular, finite fault inversion of the 2013 Mw6.1 earthquake shows the rupture from 12 km to the surface. These observations suggest a partially creeping/locking or conditionally stable frictional status on the serpentinite-rich segment of the Sumatran fault, that should be considered in both single event and earthquake cycle simulations, as well as seismic hazard assessment.

How to cite: Wei, S., Choong, Z.-Y., Li, C., Chen, Y., Umar, M., Lythgoe, K., Arifullah, A., and Simanjuntak, A.: Creep and seismic rupture of a serpentinite-rich Sumatran fault segment, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4704, https://doi.org/10.5194/egusphere-egu23-4704, 2023.

16:55–17:05
|
EGU23-6896
|
ECS
|
On-site presentation
Alexander Wickham-Piotrowski, Yvonne Font, Marc Regnier, Quentin Bletery, Monica Segovia, Jean-Mathieu Nocquet, and Bertrand Delouis

In Ecuador, on some areas of the subduction interface, accumulated stress is released aseismically through slow slip events (SSE) synchronous to seismic swarms (S5). In the La Plata island region in the Central Ecuadorian forearc, recurrent and shallow S5 occur near a portion of the plate interface highly coupled by the subduction of a massive oceanic relief. This study shows a sequence of seismicity and SSE organization propitious to investigate the cause and effect relation-ship between both phenomena.

GPS data show that an SSE (Mw 6.3) initiated at the end of November 2012 and ruptured 2 shallow aseismic patches 25 km apart (~10 km along the vertical direction). The first patch (P1), located southeastward of the island on a moderately coupled portion of the plate interface at the leading edge of the subducting oceanic mount, has a rupture area of about 80 km2 and a maximum cumulated slip of 15 cm. Its slipping behavior is pulse-like for about a month and a half. Mid-January, the slip of the SSE suddenly accelerates. A day later, a second aseismic patch (P2), updip from P1, ruptured a highly coupled area of about 250 km2 with a maximum slip of 35 cm. This second rupture lasted 8 days and accounted for 80% of total aseismic moment. Both SSE patches stopped slipping by the end of January 2013.

The spatial-temporal distribution of 2,000 micro-earthquakes between November 2012 and February 2013 provides clues about the interface processes and highlights that faulting occurred on secondary faults during an S5. An outer rise seismic cluster with an ML 4.8 earthquake occurred on a bending fault of the Nazca Plate, 10 days before P1 started. The cluster is collinear with P1 with respect to the relative plate convergence direction, suggesting a possible causal relationship. Almost no seismicity affects the plate interface during the pulse-like development of P1 until mid-January. As the P1-SSE’s slip accelerates, an intense seismic swarm developed updip of P1 along a narrow NNE-SSW trending direction, organized in sub-vertically active structures within the subducting plate. The Coulomb stress variation computed from the cumulative slip of P1 as well as the velocity migration of the cluster (about 10 km/day) suggests that the intraplate swarm is triggered and developed at the P1-SSE’s rupture front. Synchronously to P2, seismicity developed at the Northern edge of the oceanic relief.

The seismicity swarm witnesses the reactivation of oceanic bending faults within the Nazca plate. We hypothesize that this reactivation is likely responsible of a fluid release on the plate interface, that contributed to overpressuring the highly coupled area near P2, priory saturated with fluids, which ruptures aseismically afterwards. 

How to cite: Wickham-Piotrowski, A., Font, Y., Regnier, M., Bletery, Q., Segovia, M., Nocquet, J.-M., and Delouis, B.: Synchronous Slow Slip Event and Seismic Swarm in Central Ecuadorian forearc, 2013, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6896, https://doi.org/10.5194/egusphere-egu23-6896, 2023.

17:05–17:15
|
EGU23-7491
|
ECS
|
On-site presentation
Jun Ma, Bengang Zhou, and Mingming Wang

The Xianshuihe Fault Zone (XSHF) is one of the most active strike-slip faults on the eastern Tibetan Plateau. Along the NW-striking, left-lateral XSHF, as many as 8 M >7 and 29 M >6.5 earthquakes have occurred since 1700 CE. The Kangding segment is a special part of the XSHF that has four active faults and can exhibit large earthquakes. From north to south, they are the Yalahe Fault, Selaha Fault, Mugecuo South Fault, and Zheduotang Fault. However, the activity and paleoearthquake sequence of branch faults in Kangding segment remain controversial. Our detailed research is focus on the Yalahe Fault and Zheduotang Fault in Kangding segment. We mapped accurate fault traces and deformed landforms based on detailed interpretations of high-resolution imagery and aerial photographs combined with field observations. Geological and geomorphological evidence was obtained for the Holocene activities. Paleoearthquake sequence was built based on the trench work. We discussed the recurrence characteristics and slip behavior.

The Yalahe Fault follows a quasiperiodic recurrence model and Zheduotang Fault displays uniform slip behavior. From the result of paleoearthquake, the Yalahe Fault, Selaha Fault, and Zheduotang Fault experienced cascading ruptures. Therefore, the branch faults in Kangding segment have ability to generate large earthquakes in the future.

How to cite: Ma, J., Zhou, B., and Wang, M.: Latest quaternary active faulting and paleoearthquakes on the Kangding segment of the Xianshuihe Fault Zone, Eastern Tibetan Plateau, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7491, https://doi.org/10.5194/egusphere-egu23-7491, 2023.

17:15–17:25
|
EGU23-8512
|
ECS
|
On-site presentation
Effat Behboudi, David McNamara, and Ivan Lokmer

Quantitative stress data is crucial to understanding the mechanical behaviour of faults and the variation of  interface slip behaviours at subduction zones. The Hikurangi Subduction Margin (HSM), New Zealand is characterized by along-strike variations in subduction interface and fault slip behaviour, changing from shallow slow slip events (SSEs) and creep to interseismic locking and stress accumulation moving south. We quantify the shallow (<3km) HSM stress magnitudes and orientations and utilise this new data to determine tectonic variation along the HSM and discuss how this may relate to the large-scale observation in HSM subduction dynamics. For depths below ~650 mTVD results show σ3: Sv ratios of 0.92-1 along the entire HSM, and SHmax: Sv ratios of 0.95-1.81 in the central HSM, and 0.95-2.15 in the southern HSM. Such ratios infer that below ~650 mTVD a prevalent thrust to strike-slip (σ1=SHmax) faulting regime exists along the entire HSM. Our results also reveal a NE-SW (margin-parallel) SHmax orientation in the shallow central HSM, which rotates to a WNW- ESE/NW-SE (margin-perpendicular) SHmax orientation in the shallow southern HSM.

In the central HSM, we determine the  NE-SW orientation of SHmax= σ1, which is inconsistent with  NNE/NE striking reverse faults (inferring a NW-SE oriented SHmax= σ1) in the region. This suggests that the stress state evolved over time from a contractional to a strike/oblique-slip state. This temporal change in stress state in the central HSM is likely driven by development of clockwise rotation of the Hikurangi forearc and upper plate overpressures. A contemporary NW-SE oriented SHmax in the southern HSM, associated with NNE/NE striking faults, suggests the stress regime here remains contractional over time, and is less effected by forearc rotation. The variation in stress state along the HSM spatially correlates with reported along-strike variation in subduction interface slip behaviour. This spatial correlation suggests that contemporary stresses in the overriding plate above the subduction interface may reflect contemporary elastic strain accumulation processes related to subduction megathrust locking.

 

How to cite: Behboudi, E., McNamara, D., and Lokmer, I.: Quantifying stress fields to better understand shallow tectonics of the Hikurangi Subduction Margin, NZ, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8512, https://doi.org/10.5194/egusphere-egu23-8512, 2023.

17:25–17:35
|
EGU23-12162
|
ECS
|
On-site presentation
Seda Özarpacı, Uğur Doğan, Semih Ergintav, Ziyadin Çakır, Cengiz Zabcı, Alpay Özdemir, Efe Turan Ayruk, İlay Farımaz, and Mehmet Köküm

The East Anatolian Fault (EAF) is one of the continental transform systems in the Eastern Mediterranean, with a length of about 420 km between Karlıova (Bingöl) in the northeast and Türkoğlu (Kahramanmaraş). The 24 January 2020 Sivrice earthquake with Mw 6.8 once again demonstrated the seismic potential of this sinistral strike-slip fault.

The recent earthquakes and discoveries creeping along the Palu Segment (~100km far to the NE of epicenter of Mw6.8 earthquake) by geodesy- and seismology-based studies increase scientific attention. The spatio-temporal characteristics of the creep observed along the Palu Segment were investigated using nearfield GPS, InSAR, and creepmeter data. After Mw6.8 earthquake, we expanded our study area towards the Pütürge Segment in the south to determine the postseismic effects of the 24 January 2020 earthquake and the kinematics of the Pütürge Segment using multidisciplinary methods (GNSS, creepmeter, InSAR, seismology, paeloseismology) and to investigate the effects on the surrounding faults.

During the first year of the project work, a new GNSS network was established in the region and these networks will be regularly measured every six months. In addition, two permanent GNSS stations were installed. Additionally, using Sentinel-1 data sets, surface deformations mapped by PSINSAR analysis. Generally, post-earthquake effects continue and deformations moved to the SW part of unbroken part of Pütürge segment and based on the creepmeter data, surface deformations still continue at the epicenter locations, following the logarithmic afterslip responce.

This work is supported by TUBITAK project number 121Y400.

 

Keywords: East Anatolian Fault, Earthquake, GNSS, InSAR

How to cite: Özarpacı, S., Doğan, U., Ergintav, S., Çakır, Z., Zabcı, C., Özdemir, A., Ayruk, E. T., Farımaz, İ., and Köküm, M.: Earthquake Cycle of the East Anatolian Fault Between Palu-Erkenek (Eastern Türkiye): Insights of Tectonic Geodesy, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12162, https://doi.org/10.5194/egusphere-egu23-12162, 2023.

17:35–17:45
|
EGU23-14610
|
ECS
|
On-site presentation
Giacomo Pozzi, Cristiano Collettini, Marco Scuderi, Elisa Tinti, Telemaco Tesei, Cecilia Viti, Chris Marone, Alessia Amodio, and Massimo Cocco

Serpentinites are poly-mineralic rocks distributed almost ubiquitously in active tectonic regions worldwide. They are composed of rheologically weak (lizardite and crysotile) and strong (e.g., magnetite and pyroxene) phases. In particular, lizardite typically shows low friction coefficients and is supposed to localise deformation along weak shear zones characterized by aseismic behaviour. Major faults hosting serpentinite lithologies are characterised by seismic activity, tremors, and other slip modes. We advance the hypothesis that low strain domains, which are enriched in rheologically strong phases, can act as potential site of nucleation of unstable slip as the result of the velocity-dependent rheology of magnetite-rich serpentinites. Through an experimental and microstructural approach, we explore the different mechanisms whose interplay controls the complex behaviour of these lithologies.

For this study we collected natural samples of lizardite-magnetite rich serpentinites within the low strain domains of the Elba Island ophiolites (Italy). Rocks were characterised, powdered, and deformed in a set of shear experiments at four different normal stresses (25, 50, 75 and 100 MPa) in the biaxial apparatus BRAVA. The experiments consist of an initial phase of sliding at 10 μm/s, a slide-hold-slide test, and two series of velocity stepping (sliding velocity from 0.1 to 300 μm/s). Fundamental parameters to quantify the frictional properties of serpentinites are individuated in the (a-b) value, the critical slip distance Dc, and the critical stiffness kc, which is derived by their combination.

The material shows friction values of ~0.4 with velocity weakening behaviour and negative frictional healing. The module of the negative (a-b) parameter increases neatly with decreasing sliding velocity while Dc decreases, causing kc to rise. At low velocities (< 3 μm/s) sliding is unstable and the fault undergoes stick-slip behaviour. This is explained by the increase of the critical stiffness to values higher than the loading system stiffness. This systematic change of mechanical properties and fault slip behaviours with sliding velocity is interpreted to be the result of the time-dependent arrangement of grains in a heterogeneous experimental fault architecture.

Back-scattered SEM images of the principal slip zones of recovered samples support this hypothesis. Elasto-frictional behaviour is controlled by the build-up of a partial (granular) load-bearing framework of strong magnetite grains, while visco-frictional rheology is controlled by the (phyllosilicatic) anastomosing and foliated lizardite matrix. At low sliding velocities, the granular phase interacts creating force chains thus promoting frictional instabilities. At higher velocities, dilation promotes the activity of throughgoing weaker phyllosilicate planes thus favouring stable slip.

Our experiments shed light on the role of fault rock heterogeneity in nucleating dynamic slip in nature as well as in controlling the slip mode during earthquakes or slow-slip events in serpentinite terrains.

How to cite: Pozzi, G., Collettini, C., Scuderi, M., Tinti, E., Tesei, T., Viti, C., Marone, C., Amodio, A., and Cocco, M.: Slip velocity and fault stability in serpentine-rich experimental faults, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14610, https://doi.org/10.5194/egusphere-egu23-14610, 2023.

17:45–17:55
|
EGU23-16840
|
ECS
|
Virtual presentation
Pathikrit Bhattacharya, Kattumadam Sreejith, Vineet Gahalaut, Adhaina Susan James, Subhasish Mukherjee, Ratna Bhagat, and Ritesh Agrawal

The Palghar Swarm in Western India is unique given its occurrence within the stable continental interior, its unusually long duration (having started in November 2018 it continues unabated), and extremely high seismicity rate (up to a few hundreds of earthquakes a day). Given the small spatial extent (around 100 km2) of the swarm and the dense seismic network deployed by Indian agencies to monitor it, the swarm offers a unique opportunity to understand the processes driving swarms within the stable interior of the Indian plate which, compared to continental interiors elsewhere in the world, is unusually seismically active. The swarm clusters along two lineaments not expressed on the earth surface. Our InSAR analysis, assuming the lineaments to be subsurface faults, reveals predominantly normal dip-slip motion along both faults during several time windows between March 2019 and January 2020. We find the geodetically inferred moment to be an order-of-magnitude larger than the cumulative seismic moment throughout this time window indicating the presence of substantial aseismic slip. The aseismically slipping patches on the two faults migrate spatially and seem well correlated with the migration of seismicity. We explore the interaction between aseismic slip and the swarm seismicity by calculating resolved Coulomb Stress changes due to migrating aseismic slip on each fault and at the hypocentres of earthquakes large enough for a reliable moment tensor to be inferred. Preliminary results suggest a complex relationship between aseismic and seismic slip and a possible involvement of fluids. These results raise the question whether aseismic slip is commonly associated with earthquake swarms within the Indian continental interior and if these might be associated with deep fluid sources within the Indian continental crust.

How to cite: Bhattacharya, P., Sreejith, K., Gahalaut, V., James, A. S., Mukherjee, S., Bhagat, R., and Agrawal, R.: Interplay between aseismic and seismic slip in an earthquake swarm in Western India, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16840, https://doi.org/10.5194/egusphere-egu23-16840, 2023.

Posters on site: Thu, 27 Apr, 10:45–12:30 | Hall X2

Chairpersons: Luca Dal Zilio, Sylvain Michel, Audrey Bonnelye
X2.256
|
EGU23-833
|
ECS
|
Çağkan Serhun Zoroğlu, Tülay Kaya Eken, Emre Havazlı, and Haluk Özener

The North Anatolian Fault Zone (NAFZ), that represents a transform plate boundary between the Anatolian and Eurasian plates, generated several devastating earthquakes in the 20th century. The well-known seismic sequence along the NAFZ has begun with the 1939 M7.9 Erzincan Earthquake and followed a westward migrating pattern until the 1999 M>7 Izmit-Düzce ruptures. Although there have been extensive efforts on modeling co-seismic slip properties of the recent large events along the NAFZ, possible interplay of crustal properties with fault mechanics and inter-seismic loading parameters characterized by surface deformation behavior is less known. This study aims to determine the spatio-temporal behavior of long-term surface deformation along the Düzce Fault segment of the NAFZ. We examine the effect of physical properties of the crustal structure on the inter-seismic loading and surface creep parameters in this actively deforming area. For this purpose, we adopted the well-known InSAR timeseries method using publicly available Sentinel-1 data. Sentinel-1 observations covering our study area has a time span of 8 years between 2014 and 2022. We exploit geoelectrical properties and other available seismological observations/models of the crust to be evaluated with the velocity fields inferred from InSAR time series analysis. We further compare variations in the surface deformation prior to and after the most recent November 23rd, 2022, Mw6.0 Gölyaka-Düzce earthquake by using data obtained from the analysis of both ascending and descending InSAR datasets. Our preliminary results show the slip rate of ~25 mm/yr on the Duzce Fault.

This project is funded by the Bogazici University with the BAP Project No SUP-18161.

How to cite: Zoroğlu, Ç. S., Kaya Eken, T., Havazlı, E., and Özener, H.: Spatio-temporal monitoring of surface deformation of the North Anatolian Fault Zone in Düzce Region by InSAR technique, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-833, https://doi.org/10.5194/egusphere-egu23-833, 2023.

X2.257
|
EGU23-2188
|
ECS
Hsiao-Fan Lin, Alexandre Canitano, Yu-Fang Hsu, Adriano Gualandi, Ya-Ju Hsu, Hsin-Hua Huang, and Hsin-Ming Lee

The 2013 Ruisui earthquake is the first unequivocal evidence of the seismicity activity of the Central Range Fault (CRF) in the central Longitudinal Valley in Taiwan, and hence reveals the existence of aseismic slip on the CRF. The finite-fault coseismic model obtained from the Bayesian joint inversion of GNSS and strainmeter data suggests that the rupture area is mainly distributed on a 26 km × 22 km fault plane located at the depth of 3 to 19 km with a maximum slip of about 0.5 m. A variational Bayesian independent component analysis (vbICA) technique is applied to the detrended GNSS time series to extract postseismic deformations in the near-source region. Although the afterslip distribution was not able to be well inverted due to the lack of observation on the western side of the fault plane, using rate-and-state friction rheology to simulate the surface displacements generated by the stress-driven afterslip model, we infer for the first time the existence of a shallow velocity-strengthening region on the CRF, which is capable of hosting and sustaining aseismic transient deformations over months.

How to cite: Lin, H.-F., Canitano, A., Hsu, Y.-F., Gualandi, A., Hsu, Y.-J., Huang, H.-H., and Lee, H.-M.: Seismic and aseismic slip on the Central Range fault associated with the 2013 Mw 6.3 Ruisui earthquake (Taiwan), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2188, https://doi.org/10.5194/egusphere-egu23-2188, 2023.

X2.258
|
EGU23-2484
|
ECS
Sean Kuanhsiang Chen, Yih-Min Wu, and Yu-Chang Chan

The southernmost Ryukyu subduction zone may have a geodetically inferred Mw 7.5 to 8.7 megathrust earthquake in a shallow locked region, the Ryukyu fault. Paleoseismological evidence of historical earthquakes available from the last 417 years indicates that only a 1920 Mw 7.7 earthquake occurred within this magnitude range, near the downdip end of the Ryukyu fault. As slow slip events downdip the locked seismogenic zone may trigger a large subduction earthquake, we investigate how the first observed slow slip events in 2005, 2009, and 2015 initiated downdip in the Ryukyu fault interface affect the occurrence of a megathrust. We establish possible megathrust earthquake cycles from Mw 7.5 to 8.7 on the Ryukyu fault using constraints from the magnitude-frequency relation based on local historical earthquakes. This analysis shows a b value of 1.2 for magnitudes greater than Mw 7.0, which is higher than the empirical 1.0 value. This indicates that the recurrence of an event up to Mw 8.7 is longer than previously thought if the megathrust events follow the observed magnitude-frequency relation. Then, we quantify the influence of slow slip events on the triggering of a potential megathrust earthquake by calculating the static stress increase. We find that stress perturbations caused by the three slow slip events are generally consistent with the values that have triggered the large interplate earthquakes in several subduction zones. However, a large earthquake has not yet been triggered on the Ryukyu fault after a sequence of slow slip events. If the 1920 Mw 7.7 earthquake is the last rupture of the Ryukyu fault, the earthquake cycle on the Ryukyu fault is very likely in an early stage. However, this is not true if the slow slip events occur toward the end of the earthquake cycle and there has been no megathrust earthquake at the fault interface in the last 417 years, as the 2011 Mw 9.0 Tohoku earthquake. Thus, higher potential for a megathrust earthquake may occur in the southernmost Ryukyu subduction zone.

How to cite: Chen, S. K., Wu, Y.-M., and Chan, Y.-C.: The Seismogenic Potential of the Southernmost Ryukyu Subduction Zone as Revealed by Historical Earthquakes and Slow Slip events, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2484, https://doi.org/10.5194/egusphere-egu23-2484, 2023.

X2.259
|
EGU23-2745
|
ECS
Yuji Itoh, Anne Socquet, and Mathilde Radiguet

Megathrust faults are known to host both seismic and aseismic slip. Laboratory experiments and numerical simulations have demonstrated that seismic-aseismic interaction can be involved in the earthquake source process such as nucleation and termination. However, models of seismic-aseismic interaction regarding the source process are still controversial because their observational evidence is limited to the small number of events among instrumentally recorded earthquakes. This is likely due to the low signal-to-noise ratio of observations and/or short duration of the nucleation and termination processes. In this study, we newly report aseismic slip accompanying intriguing seismicity during the 2014 Iquique earthquake sequence by analysing seismicity and high-rate GPS crustal deformation data.

We document early postseismic deformation during the 3 days following the M 8.1 mainshock and demonstrate that afterslip started immediately after the mainshock and led 27 hours later to the M 7.6 largest aftershock which located ~120 km further south. The interevent afterslip peaks down-dip of the mainshock with decaying moderate aftershock rate, exhibiting typical postseismic megathrust response. A local peak of the afterslip is inferred between the mainshock and the largest aftershock epicentres. This local peak suggests that this area acted as an aseismic barrier to the southward mainshock rupture propagation so that the two big quakes did not occur simultaneously.

The geodetic moment everywhere decreased with time during the 27h interevent stage with different decaying rate. The decay was slower in the afterslip area between the two epicentres than the main down-dip peak. Interestingly, the seismicity rate and associated moment release in this area increased with time during the interevent 27 hours. We propose that the largest aftershock nucleation was driven by the afterslip. Contrary to predictions of some numerical simulation models, our result implies that aseismic slip during the nucleation process does not necessarily accelerate. Our new observational discovery illuminates the mechanical connection between sequential great earthquakes mediated by aseismic slip.

How to cite: Itoh, Y., Socquet, A., and Radiguet, M.: Largest aftershock nucleation driven by afterslip during the 2014 Iquique sequence, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2745, https://doi.org/10.5194/egusphere-egu23-2745, 2023.

X2.260
|
EGU23-7388
|
ECS
|
Uroš Novak

Western Slovenia belongs to actively deforming north-eastern Adriatic region. Active tectonic deformations of the region are a response to the anti-clockwise rotation of Adria and still ongoing collision with Eurasia. Active deformations are generally accommodated by right-lateral strike-slip and thrust faulting at rates of 2–4 mm/yr.

Monitoring of active tectonics at the junction of seismically active NW External Dinarides and Southern Alps (Slovenia) through quantification of micro-displacements of faults began in 2004, with a TM 71 extensometer situated in Postojna cave (NW External Dinarides). At present there are 12 monitoring sites with TM 71 and 72 extensometers throughout Slovenia, 9 of the instruments are stationed in natural and artificial cave environments. Cave climates are considered to be stable and thus provide a reliable environment for micro-displacement monitoring, minimizing or nullifying the effect of fluctuating temperatures on the TM instrument. The instruments were preferably installed in major regional Dinaric fault zones (NW-SE direction). Where the latter wasn’t possible, suitable locations on their ancillary faults was chosen as an indirect substitute. All the monitored TM extensometer sites display tectonic displacements, that on average range from a few microns to several tens of microns in time scales from days to years. Postojna cave is one of the most intriguing micro-displacement monitoring sites. The site exhibited large tectonic transient signals that coincided with the local swarm-like earthquake activity in the years, 2009-2010 and 2014-2015. Monitoring site of Pološka cave in Julian Alps (Southern Alps) in addition to recording tectonic displacements, inadvertently records some displacements that are not tectonic in origin, but rather exhibits slope instability, likely deep-seated gravitational slope deformation. TM extensometer micro-displacement monitoring in Slovenia is still an ongoing project.

Of late, creepmeters were installed on major active western Dinaric regional faults, in 2022. In an effort to advance the understanding of characteristics and relationships between earthquake activity and potential fault creep. A fault creep monitoring campaign, with some instruments already installed, on two major active western Dinaric faults, Idrija and Raša fault, has begun and more are pending to be installed on the Dinaric fault system.

How to cite: Novak, U.: Monitoring active tectonics via fault micro-displacements in western Slovenia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7388, https://doi.org/10.5194/egusphere-egu23-7388, 2023.

X2.261
|
EGU23-9319
|
ECS
Low-Frequency Aftershocks in The Pichilemu crustal fault system during the post-seismic period of the 2010 Mw8.8 Maule Earthquake
(withdrawn)
Kellen Azúa, Francisco Pasten-Araya, and Sergio Ruiz
X2.262
|
EGU23-10525
|
ECS
Zhengfeng Zhang, Huai Zhang, and Yaolin Shi

We proposed a method to simultaneously calculate the strain rate from GNSS (Global Navigation Satellite System) velocity data and present a set of inspection standards to assess the validity and resolution of this kind of method calculating strain rate using GNSS velocity in this study. We first explain the mathematical principle of the spherical spline method. And then, we introduce the spherical spline method to fit artificial GNSS velocity data of mainland China to illustrate inspection standards. In realization, we first calculate the artificial linear velocity value of the station with a rigid rotation model, then obtain the strain rate of the Chinese mainland by the spherical spline method. In this case, the theoretical rotational strain should be zero to illustrate the generality of the spherical coordinate method. Furthermore, we construct a spherical harmony model for the resolution test. By the test criteria, the spherical spline method can reproduce the velocity and strain rate field at quite a high level, suggesting that our method has high applicability and resolution in estimating strain rate. Finally, we used measured GNSS velocity data to calculate the strain rate field in mainland China using the spherical spline method. We also analyze the correlation between the seismic mechanism and the strain rate field of earthquakes since 1960 and consider the seismic rate of mainland China.

How to cite: Zhang, Z., Zhang, H., and Shi, Y.: On the use of resolution test in calculating strain rate using GNSS velocity, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10525, https://doi.org/10.5194/egusphere-egu23-10525, 2023.

X2.263
|
EGU23-13761
Axel Periollat, Mathilde Radiguet, Jérôme Weiss, Cédric Twardzik, Nathalie Cotte, Lou Marill, and Anne Socquet

Earthquakes are usually followed by a postseismic phase where the stresses induced by the earthquakes are relaxed. It is a combination of different processes among which aseismic slip on the fault zone (called afterslip), viscoelastic deformation of the surrounding material, poroelastic relaxation and aftershocks. However, little work has been done at the transition from the co- to the postseismic phase, and the physical processes involved.

 

We study the 2011 Mw 9.0 Tohoku-Oki earthquake, one of the largest and most instrumented recent earthquakes, using GEONET GPS data. We focus on the few minutes to the first month following the mainshock, a period dominated by afterslip. 

Based on the method developed by Twardzik et al. (2019), we process 30-s kinematic position time series and we use it to characterize the fast displacements rates that typically occur during the early stages of the postseismic phase. We quantify precisely the co-seismic offset of the mainshock, without including early afterslip, and we also characterize the co-seismic offset of the Mw 7.9 Ibaraki-Oki aftershock, which occurred 30 minutes after the mainshock. We analyze the spatial distribution of the co-seismic offsets for both earthquakes. We also use signal induced by the postseismic phase over different time windows to investigate the spatio-temporal evolution of the postseismic slip. We determine the redistribution of stresses to estimate the regional influence of the mainshock and aftershock on postseismic slip.

 

From a detailed characterization of the first month of postseismic kinematic time series, we find that the best-fitting law is given by an Omori-like decay. The displacement rate is of the type v0/(t+c)p with spatial variation for the initial velocity v0 and for the time constant c. We find a consistent estimate of the p-value close to 0.7 over most of the studied area, apart from a small region close to the aftershock location where higher p values (p~1) are observed. This p value of 0.7 shows that the evolution of the Tohoku-Oki early afterslip is not logarithmic. We discuss about the implications of these observations in terms of subduction interface dynamics and rheology. We also discuss about the different time-scales involved in the relaxation, and how this model, established for the early postseismic phase over one month, performs over longer time scales (by comparison with daily time series lasting several years).

Twardzik Cedric, Mathilde Vergnolle, Anthony Sladen and Antonio Avallone (2019), doi.org/10.1038/s41598-019-39038-z 

Keywords: Early Postseismic, Afterslip, GPS, Kinematic, Omori Law

How to cite: Periollat, A., Radiguet, M., Weiss, J., Twardzik, C., Cotte, N., Marill, L., and Socquet, A.: The early postseismic phase of Tohoku-Oki earthquake (2011) from kinematics solutions: implication for subduction interface dynamics, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13761, https://doi.org/10.5194/egusphere-egu23-13761, 2023.

X2.264
|
EGU23-14523
|
ECS
InSAR observations in 2014–2021 reveal variations in shallow creep on the Kangding segment of the Xianshuihe fault
(withdrawn)
Xing Huang, Xinjian Shan, Romain Jolivet, Yanchuan Li, Dezheng Zhao, and Zhiyu Gao
X2.265
|
EGU23-4259
Kuo-En Ching, Po-I Li, Wu-Lung Chang, Shih-Han Hsiao, Chien-Liang Chen, and Kwo-Hwa Chen

A unified geodetic data-based earthquake catalog may provide the asperity information to improve the seismic hazard assessment. Therefore, we propose a unified geodetic data-based earthquake catalog in Taiwan from 2006-2018 using the geodetic data from 333 campaign-mode GNSS stations and 19 precise leveling routes and the published continuous GNSS data to improve the spatial resolution and reliability of vertical component in coseismic displacement fields. The coordinate time series analysis was used to derive the coseismic displacements of each earthquake from the sGNSS and precise leveling data by using the least square method. This earthquake catalog involves 2006 ML 7.0 Pingtung offshore earthquake, 2010 ML 6.4 Jiashian earthquake, March 2013 ML 6.2 Nantou earthquake, June 2013 ML 6.5 Nantou earthquake, 2013 ML 6.4 Ruisui earthquake, 2016 ML 6.6 Meinong earthquake, and 2018 ML 6.2 Hualien earthquake. Then the coseismic source models of these events were evaluated by inverting the coseismic displacement fields. Based on this earthquake catalog, we provided high spatial resolution and precision in the vertical deformation and the resolution of the modeled fault dip angle is also improved. In addition, unknown coseismically reactivated anticlinal structures in SW Taiwan were discovered in this study, which may be associated with the active mud diapirs. Finally, because of abundant coseismic geodetic data adopted in this study, the spatial resolution of coseismic slip distribution is also increased in those earthquake events.

How to cite: Ching, K.-E., Li, P.-I., Chang, W.-L., Hsiao, S.-H., Chen, C.-L., and Chen, K.-H.: A unified geodetic data-based earthquake catalog of Taiwan from 2006 to 2018, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4259, https://doi.org/10.5194/egusphere-egu23-4259, 2023.

X2.266
|
EGU23-1803
|
Ruey-Juin Rau, Li-Chia Lai, and Kuo-En Ching

We used 70 campaign-mode, 12 continuous and 6 high-rate GNSS and InSAR data to examine the coseismic off-fault antithetic shear triggered by the 2016 Mw 6.4 Meinong oblique thrust earthquake at the Hsinhua fault area, ~30 km northwest of the epicenter. The GNSS and InSAR data were inverted to estimate the 3D coseismic displacement field at the Tainan frontal fold-thrust belt, where the deformation is mostly affected by the directivity along the rupture front direction of the Meinong earthquake. The coseismic deformation pattern shows dominantly synthetic shear along the rupture direction, on the contrary, a nearly N-S striking, 7-km-long and 5-km-wide area indicating antithetic motion appeared at northeast of the Tainan tableland and cross-cutting the ENE-WSW-striking Hsinhua fault at a high angle. The N-S striking structure at the Hsinhua fault area reveals coseismic horizontal displacements of 3.0-7.0 cm to the southeast and vertical displacements of 0.4 to 4.4 cm, and although in the opposite direction, the magnitude of horizontal displacements of the antithetic shear are comparable to those of the synthetic motion in the adjacent areas. We calculated the static Coulomb stress change on the possible west-dipping shallow structure at the Hsinhua area due to slip on the source fault of the 2016 Meinong earthquake. The calculated static stress change is about 0.05 bar, which is negligible and very unlikely to promote the structure or bedding to slip at 30-km away for such a moderate earthquake. We also processed 6 high-rate, two 50-Hz and four 1-Hz, GNSS data for the PPP displacement and SNIVEL GPS-derived velocities, in that two stations, one 50-Hz and one 1-Hz, are located inside the block with antithetic motion. The high-rate GNSS solutions indicate that the displacements occurred at the same time when the P and S waves arrived, and velocity pulses up to 90.0 cm/s appeared at all six stations. We suggest that, as evidenced by large velocity pulses resulted from the strong directivity effect, the dynamic stress change caused by the rupture of the 2016 Meinong earthquake triggered the structure 30-km away.

How to cite: Rau, R.-J., Lai, L.-C., and Ching, K.-E.: Coseismic off-fault antithetic shear deformation in southwestern Taiwan triggered by the 2016 Mw 6.4 Meinong earthquake, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1803, https://doi.org/10.5194/egusphere-egu23-1803, 2023.

Posters virtual: Thu, 27 Apr, 10:45–12:30 | vHall TS/EMRP

vTE.1
|
EGU23-11133
|
Raj kumar, Sanjay Kumar Prajapati, Sanjit Kumar Pal, and Om Prakash Mishra

The North-Eastern (NE) area of India is bounded by the confluence of three major tectonic plates constituting two convergent plate boundaries that essentially govern the complex seismotectonic of this Himalayan region that renders it seismically most active.  The area studied in the present work is confined to the hyperactive zone contained in the grid 20o - 30o N latitude and 88o -100o E longitude.  We analyze five years of GPS data obtained from sixteen Global Positioning System (GPS) campaign mode stations and two permanent ones deployed in the NE region. These velocities are used in estimating dilatational and shear strain rates along with the principal axes of strains. The estimated dilatational strain rate ranges from -0.13 to 0.1 microstrain/yr. In general, the velocity and strain rate fields are consistent with ongoing India-Eurasia collision and Indo-Burma subduction processes. Superposed on this pattern, we find that the intense dilatational field corresponds to the vicinage of the region between the main boundary and central Himalayan thrusts (viz. MBT, MCT), and while it is moderate in some regions of Indo Burmese Arc (IBA). Three distinct regions with high compressive strain rate distribution are delineated along the thrust zones. Two of these regions corresponds to the regions where the Kopili fault and  Tista lineament transversely converge MCT and transgresses into the MBT/MCT in Sikkim Himalaya and Bhutan Himalaya respectively and other with northern syntax region,  posing a high seismic hazard. , Some pockets of moderate strain rate near to the intersection areas of Kopili, Dauki faults and IBA, positionally relate to the high seismic zones and are consistent well with the statistical seismology, seismic topography and potential field anomalies.  Our study focuses on velocity and strain rate distribution vis-à-vis seismicity and crustal heterogeneity in the region facilitating the estimation of earthquake hazard potential.

How to cite: kumar, R., Prajapati, S. K., Pal, S. K., and Mishra, O. P.: Seismotectonics of the northeast Indian region based on GPS velocities, stress and strain rate  field characterization, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11133, https://doi.org/10.5194/egusphere-egu23-11133, 2023.