EGU23-2318
https://doi.org/10.5194/egusphere-egu23-2318
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mineralogy, major and trace element geochemistry of rock-forming and rare earth minerals in the Bayan Obo (China) carbonatite dykes: implications for REE mineralization

Jinkun Yang and Wenlei Song
Jinkun Yang and Wenlei Song
  • Northwest University, Department of Geology, China (202010309@stumail.nwu.edu.cn)

Rare earth elements (REE) have been a focus of global interest because of their irreplaceable role in developing “low carbon” technologies. The Bayan Obo is the world’s largest REE deposit, but its genesis is still highly debated. It is considered to have a close genetic association with carbonatite due to the presence of the carbonatite dykes around the orefield, as well as the geochemical similarities between these dykes and the orebody. However, the evolution of the carbonatite dykes and their REE mineralization are still poorly understood, hindering the interpretation of the genesis of the deposit. More than 100 carbonatite dykes have been found within the area of 0-3.5km nearby the orebodies of the deposit. These dykes show significant variations in mineralogy and geochemistry and were classified into dolomite (DC) and calcite carbonatite (CC). The rocks show an evolutionary sequence from DC to CC, and their corresponding REE contents increased remarkably, with the latter having very high REE content (REE2O3 up to 20 wt. %). The DC is composed of coarse-grained dolomite, magnetite, calcite, and apatite without apparent REE mineralization. The medium-grained calcites, and significant amounts of REE minerals, such as monazite, bastnäsite, and synchysite, make up CC. The REE minerals have a close relationship with barite, quartz, and aegirine. The REE patterns of dolomite and calcite in DC showed a steep negative slope with a strong LREE enrichment. In contrast, the calcite from CC has a near-flat REE pattern enriched in both LREE and HREE. Besides, apatite and magnetite in CC are characterized by strong REE enrichment compared to those from DC. Based on detailed petrology, mineralogy, and element geochemistry, we propose that strong fractional crystallization of initial carbonatitic melts led the REE enriched in the residual melt/fluid to form REE mineralization. In addition, sulfate, alkalis, and silica components play an important role in REE transportation and precipitation.

How to cite: Yang, J. and Song, W.: Mineralogy, major and trace element geochemistry of rock-forming and rare earth minerals in the Bayan Obo (China) carbonatite dykes: implications for REE mineralization, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-2318, https://doi.org/10.5194/egusphere-egu23-2318, 2023.