Wildfires alter nitrifier communities and increase soil emissions of NOx but not N2O in California chaparral
- University of California Riverside, Environmental Sciences, United States of America (estep007@ucr.edu)
Background:
Fires burn roughly 3% of Earth’s land surface each year and are predicted to become more frequent and severe as human-caused climate change progresses. Fires can drive ecosystem N loss by volatilizing N bound in plant biomass to the atmosphere and by leaving behind ash rich in ammonium (NH4+) and organic N that can run off when it rains. While N volatilization and runoff account for a large fraction of N loss after fires, budget imbalances suggest soil emissions of nitric oxide (NO) and nitrous oxide (N2O) may also be significant N loss pathways after fire. Identifying sources of NO and N2O is important because NO is a precursor for tropospheric O3 which causes high rates of asthma hospitalizations,and N2O is a powerful greenhouse gas with 300× the warming potential of CO2. Soil emissions of NO and N2O are largely governed by the microbial processes of nitrification and denitrification. Under aerobic conditions typical of dry soils, nitrifying organisms such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) oxidize NH4+ to nitrate (NO3-) and release NO and N2O as byproducts. AOA and AOB process N with different efficiencies, suggesting shifts in AOA:AOB ratios may change N emissions. Specifically, AOB are dominant in soils with high NH4+and pH and produce higher NO and N2O emissions. Since such soil conditions are frequently observed after fires, we hypothesize NO and N2O emissions will increase as AOB communities become dominant. To test this, we collected soil cores from 5 plots in the Sequoia National Park, CA over a time series starting two weeks after a high severity chaparral fire. We selectively inhibited AOA and AOB communities to measure their contributions to NO and N2O emissions. We also measured the isotopic composition of N2O emissions from these soils using an LGR isotopic N2O analyzer to better understand the processes responsible for post-fire N2O production.
Results/Conclusions
One month after the fire, soil bulk emissions of NO over 72hrs were 1.5 times higher in the burned plots (101.4 ± 22.4 µg N-NO/g soil burned; 67.1 ± 19.3 µg N-NO/g soil unburned; ±SE). Bulk soil emissions of N2O over 72hrs were 7.5 times lower in burned plots compared to before the fire (0.0616 ± 0.04 ng N-N2O/g soil burned; 0.463 ± 0.19 ng N-N2O/g soil unburned; ±SE). Although the effects of fire on nitrifier communities were not significant at one month post-fire (Control: p=0.14, AOA: p=0.09, AOB: p=0.162), both AOA and AOB contributions to NO emissions increased in response to fire. Results for nitrifier contributions to N2O emissions were highly variable and non-significant with no clear trends as all N2O emissions were near zero. Further analysis over the time series may yield clearer results as microbial communities have more time to recover. Pairing these data with isotopic information (in progress) may yield one of the most in-depth understandings of post-fire NO and N2O emissions to date.
How to cite: Stephens, E., Greene, A., Krichels, A., and Homyak, P.: Wildfires alter nitrifier communities and increase soil emissions of NOx but not N2O in California chaparral , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3695, https://doi.org/10.5194/egusphere-egu23-3695, 2023.