BG1.2 | Fire in the Earth system: understanding effects across spatiotemporal scales
EDI
Fire in the Earth system: understanding effects across spatiotemporal scales
Co-organized by AS4/CL1.2/NH7
Convener: Gabriel SigmundECSECS | Co-conveners: Micheline Campbell, Rebecca ScholtenECSECS, Liza McDonoughECSECS, Renata Libonati, Fang Li, Angelica Feurdean
Orals
| Mon, 24 Apr, 08:30–12:25 (CEST), 14:00–15:40 (CEST)
 
Room C
Posters on site
| Attendance Tue, 25 Apr, 14:00–15:45 (CEST)
 
Hall A
Posters virtual
| Attendance Tue, 25 Apr, 14:00–15:45 (CEST)
 
vHall BG
Orals |
Mon, 08:30
Tue, 14:00
Tue, 14:00
Fire is an essential feature of many ecosystems and an important component of the Earth system. Climate, vegetation, and human activity regulate fire occurrence and spread, but fires also feedback to them in multiple ways, resulting in changing fire regimes in many regions of the world. This session welcomes contributions that explore the role of fire in the Earth system at any temporal and spatial scale using modeling, field and laboratory observations, proxy-records including tree fire scars, sedimentary charcoal cores, ice cores, speleothems, and/or remote sensing. We encourage abstracts that advance our understanding on (1) fire related emissions (e.g. emission factors, emission height, smoke transport), (2) spatial and temporal changes of fire regimes in the past, present, and future, (3) fire products and models, and their validation, error/bias assessment and correction, (4) analytical tools designed to enhance situational awareness among fire practitioners and early warning systems. We are also welcoming submissions on fire related changes (5) in weather, climate, as well as atmospheric chemistry and circulation, (6) vegetation composition and structure, (7) cryosphere (e.g. permafrost, sea ice), (2) biogeochemical cycling of carbon, nitrogen and trace elements, (8) soil functioning and soil organic matter dynamics, as well as (9) effects of fires on humans (e.g., impact of fire on air and water quality, freshwater resources, human health, land use and land cover change, fire management).

Early career researchers and underrepresented groups in the field are strongly encouraged to apply.

Orals: Mon, 24 Apr | Room C

Chairpersons: Micheline Campbell, Liza McDonough, Gabriel Sigmund
08:30–08:35
past fires - new insights and proxies
08:35–08:45
|
EGU23-15670
|
ECS
|
solicited
|
Highlight
|
On-site presentation
Luke Andrews, Michał Słowiński, Harry Roberts, Katarzyna Marcisz, Piotr Kołaczek, Agnieszka Halaś, Dominika Łuców, and Mariusz Lamentowicz

Peatlands are globally important carbon sinks and stores. Climate change threatens to alter carbon cycling in some regions of the Northern Hemisphere, causing them to become net sources of atmospheric carbon, exerting a positive feedback upon global climate. Furthermore, enhanced drying, increased human activity and vegetation succession in response to a warming climate have increased the frequency of wildfires in some peat-bearing regions, including areas underlain by permafrost. Such events can cause thousands of years’ worth of formerly stable carbon to be rapidly released into the atmosphere, imparting further climate warming.

 

The future response of peatlands to climate warming and wildfire remains uncertain, and as a result peatlands are rarely included in Earth System Models, despite their importance in the global carbon system. Understanding how changes in climate and anthropogenic activity in the past affected peatland ecosystem functioning will improve our understanding of how these sensitive ecosystems may respond to future projected changes and thus reduce this uncertainty.

 

Our project aims to assess how warming, drought and wildfire have impacted the resilience of peatlands and permafrost in the Northern Hemisphere over the past c. 2000 years. Several peat cores spanning a latitudinal gradient covering several regions including Russia, Poland, the Baltic states and Scandinavia will be analysed using multiple palaeoecological proxies at high resolution to reconstruct past changes in wildfire frequency, hydrology and vegetation. This will allow us to define baselines and threshold values for ecosystem shifts relevant to future projected changes in climate.

 

How to cite: Andrews, L., Słowiński, M., Roberts, H., Marcisz, K., Kołaczek, P., Halaś, A., Łuców, D., and Lamentowicz, M.: Identifying tipping points and threshold values for ecosystem functioning in northern peatlands during the climate crisis (PEATFLAMES), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15670, https://doi.org/10.5194/egusphere-egu23-15670, 2023.

08:45–08:55
|
EGU23-5113
|
ECS
|
On-site presentation
|
Elena Argiriadis, Rhawn F. Denniston, Stefania Ondei, and David Bowman

Recent developments in speleothem science are showing their potential for paleofire reconstruction through a variety of inorganic and organic proxies including trace metals (1) and the pyrogenic organic compound levoglucosan (2). Previous work by Argiriadis et al. (2019) presented a method for the analysis of trace polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in stalagmites (3). These compounds reflect biogeochemical processes occurring at the land surface, in the soil, and in the cave. PAHs are primarily related to combustion of biomass while n-alkanes, with their potential for vegetation reconstruction (4), provide information on fuel availability and composition, as well as fire activity. These organic molecules are carried downward by infiltrating water and incorporated into speleothems (5), thereby creating the potential to serve as novel paleofire archives.

Using this approach, we developed a high-resolution stalagmite record of paleofire activity from cave KNI-51 in tropical northwestern Australia. This site is well suited for high resolution paleofire reconstruction as bushfire activity in this tropical savanna is some of the highest on the continent, the cave is shallow and overlain by extremely thin soils, and the stalagmites are fast-growing (1-2 mm yr-1) and precisely dated. We analyzed three stalagmites which grew continuously in different time intervals through the last millennium - KNI-51-F (CE ~1100-1620), KNI-51-G (CE ~1320-1640), and KNI-51-11 (CE ~1750-2009). Samples were drilled continuously at 1-3 mm resolution from stalagmite slabs, processed in a stainless-steel cleanroom to prevent contamination.

Despite a difference in resolution between stalagmites KNI-51-F and -G, peaks in the target compounds show good replication in the overlapping time interval of the two stalagmites, and PAH abundances in a portion of stalagmite KNI-51-11 that grew from CE 2000-2009 are well correlated with satellite-mapped fires occurring proximally to the cave.

Our results suggest an increase in the frequency of low intensity fire in the 20th century relative to much of the previous millennium. The timing of this shift is broadly coincident with the arrival of European pastoralists in the late 19th century and the subsequent displacement of Aboriginal peoples from the land. Aboriginal peoples had previously utilized “fire stick farming”, a method of prescribed, low intensity burning, that was an important influence of ecology, biomass, and fire.  Prior to the late 1800s, the period with the most frequent low intensity fire activity was the 13th century, the wettest interval of the entire record. Peak high intensity fire activity occurred during the 12th century.

Controlled burn and irrigation experiments capable of examining the transmission of pyrogenic compounds from the land surface to cave dripwater represent the next step in this analysis. Given that karst is present in many fire-prone environments, and that stalagmites can be precisely dated and grow continuously for millennia, the potential utility of a stalagmite-based paleofire proxy is high.

 

 

(1) L.K. McDonough et al., Geochim. Cosmochim. Acta. 325, 258–277 (2022).

(2) J. Homann et al., Nat. Commun., 13:7175 (2022).

(3) E. Argiriadis et al., Anal. Chem. 91, 7007–7011 (2019).

(4) R.T. Bush, F. A. McInerney, Geochim. Cosmochim. Acta. 117, 161–179 (2013).

(5) Y. Sun et al., Chemosphere. 230, 616–627 (2019).

How to cite: Argiriadis, E., Denniston, R. F., Ondei, S., and Bowman, D.: Speleothem organic biomarkers trace last millennium fire history at near-annual resolution in northwestern Australia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5113, https://doi.org/10.5194/egusphere-egu23-5113, 2023.

08:55–09:05
|
EGU23-2097
|
On-site presentation
Jessica Oster, Julia Homann, Cameron de Wet, Sebastian Breitenbach, and Thorsten Hoffmann

Recent wildfire activity in semi-arid regions like western North America exceeds the range of historical records. High-resolution paleoclimate archives such as stalagmites could illuminate the link between hydroclimate, vegetation change, and fire activity in pre-anthropogenic climate states beyond the timescale of existing tree-ring records. Here we present an analysis of levoglucosan, a combustion-sensitive anhydrosugar, and lignin oxidation products (LOPs) in a stalagmite from White Moon Cave in the California Coast Range in order to reconstruct fire activity and vegetation composition across the 8.2 kyr event. Elevated levoglucosan concentrations suggest increased fire activity while altered LOP compositions indicate a shift toward more woody vegetation during the event, with the shift in vegetation preceding the increase in fire activity. These changes are concurrent with increased hydroclimate volatility as shown by carbon and calcium isotope proxies. Together, these records suggest that climate whiplash (oscillations between extreme wetness and aridity) and fire activity in California, both projected to increase with anthropogenic climate change, were tightly coupled during the early Holocene.

How to cite: Oster, J., Homann, J., de Wet, C., Breitenbach, S., and Hoffmann, T.: Linked fire activity and climate whiplash in California during the early Holocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2097, https://doi.org/10.5194/egusphere-egu23-2097, 2023.

09:05–09:15
|
EGU23-13603
|
ECS
|
Virtual presentation
Ramesh Glückler, Josias Gloy, Elisabeth Dietze, Ulrike Herzschuh, and Stefan Kruse

Even though wildfires are an important ecological component of larch-dominated boreal forests in eastern Siberia, intensifying fire regimes may induce large-scale shifts in forest structure and composition. Recent paleoecological research suggests that such a state change, apart from threatening human livelihoods, may result in a positive feedback on intensifying wildfires and increased permafrost degradation [1]. Common fire-vegetation models mostly do not explicitly include detailed individual-based tree population dynamics. However, setting a focus on patterns of forest structure emerging from interactions among individual trees in the unique forest system of eastern Siberia may provide beneficial perspectives on the impacts of changing fire regimes. LAVESI (Larix Vegetation Simulator) has been previously introduced as an individual-based, spatially explicit vegetation model for simulating fine-scale tree population dynamics [2]. It has since been expanded with wind-driven pollen dispersal, landscape topography, and the inclusion of multiple tree species. However, until now, it could not be used to simulate effects of changing fire regimes on those detailed tree population dynamics.

We present simulations of annually computed tree populations during the past c. 20,000 years in LAVESI, while applying a newly implemented fire module. Wildfire ignitions can stochastically occur depending on the monthly fire weather. Within the affected area, fire intensity is mediated by surface moisture. Fire severity depends on the intensity, with scaled impacts on trees, seeds and the litter layer. Each tree has a chance to survive wildfires based on a resistivity estimated from its height and species-specific traits of bark thickness, crown height, and their ability to resprout. The modelled annual fire probability compares well with a local reconstruction of charcoal influx in lake sediments. Simulation results at a study site in Central Yakutia, Siberia, indicate that the inclusion of wildfires leads to a higher number of tree individuals and increased population size variability compared to simulations without fires. In the Late Pleistocene forests establish earlier when wildfires can occur. The new fire component enables LAVESI to serve as a tool to analyze effects of varying fire return intervals and fire intensities on long-term tree population dynamics, improving our understanding of potential state transitions in the Siberian boreal forest.

References:

[1] Glückler R. et al.: Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies, Frontiers in Ecology and Evolution 10, 2022.

[2] Kruse S. et al.: Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix, Ecological Modelling 338, 101–121, 2016.

How to cite: Glückler, R., Gloy, J., Dietze, E., Herzschuh, U., and Kruse, S.: Simulating wildfire impacts on boreal forest structure over the past 20,000 years since the Last Glacial Maximum in Central Yakutia, Siberia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13603, https://doi.org/10.5194/egusphere-egu23-13603, 2023.

09:15–09:25
|
EGU23-4520
|
ECS
|
On-site presentation
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison

Climate change and atmospheric CO2 levels can influence wildfire properties through separate and potentially contrasting impacts on vegetation and climate. One way to examine the sensitivity of global wildfire properties to changes in climate and CO2 levels is using an out-of-sample experiment, such as the Last Glacial Maximum (LGM; 21 ka BP). Charcoal records show reduced burning at the LGM, when CO2 levels were ~ 185 ppm and the climate was cooler and drier. In this analysis, we isolated out the potential effects of LGM CO2 levels and LGM climate on the spatial patterns of global wildfire properties.

Using three statistical models, we conducted simulations of the spatial distribution of global burnt area, fire size and fire intensity under four scenarios: modern climate/modern CO2 levels, LGM climate/LGM CO2 levels, modern climate/LGM CO2 levels and LGM/ modern CO2 levels. We used outputs from three coupled ocean–atmosphere models representative of the range of simulated LGM climates. The ecophysiological effect of CO2 levels was explicitly accounted for through vegetation inputs. Gross primary productivity (GPP) and land cover were derived for the LGM and modern climate keeping either CO2 levels at 395 ppm (modern), or setting them to 185 ppm, using the P Model, a first-principles model of GPP which allows continuous acclimation of photosynthetic parameters to environmental variations, and the BIOME4 equilibrium global vegetation model.

Our results show a reduction in burnt area under LGM CO2 levels, both with modern and LGM climate inputs. In the case of the warmest of the LGM climate scenarios, this reduction was of the same magnitude as the combined LGM climate/LGM CO2 levels scenario. However, the driest and coldest LGM climate scenario produced a reduction in burnt area even with modern CO2 levels, and the largest reduction in burnt area with LGM CO2.  The reduction was primarily driven by changes in vapour pressure deficit (VPD). Fire size increased under LGM climates, due to changes in wind and VPD. The lower CO2 values at the LGM had no impact on fire size. Fire intensity increased under LGM climates and LGM CO2 levels, with both effects of similar amplitude and changes driven primarily by VPD, GPP and diurnal temperature range. 

We compared our outputs with sedimentary charcoal records from the Reading Palaeofire Database (RPD). Overall, the burnt area LGM CO2 levels/LGM climate scenario showed the greatest agreement, though depending on how cold and dry the LGM climate was, this agreement was either equal to LGM CO2 levels or LGM climate alone. These results suggest that whilst there was reduced global burning at the LGM, there may have been larger and more intense fires. They also highlight the importance of the ecophysiological effect of CO2 levels on fuels, a major control of burnt area and fire intensity regardless of climate. They point to the importance of including this effect in process-based fire models, as well as the importance of accurately estimating the amplitude of projected change for different climate variables in order to increase the reliability of future projections.

How to cite: Haas, O., Prentice, I. C., and Harrison, S. P.: Examining the response of different wildfire properties to changes in climate and CO2 levels at the Last Glacial Maximum, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4520, https://doi.org/10.5194/egusphere-egu23-4520, 2023.

09:25–09:45
|
EGU23-3238
|
ECS
|
solicited
|
Virtual presentation
Michela Mariani, Simon Connor, Michael-Shawn Fletcher, Simon Haberle, Janelle Stevenson, Peter Kershaw, Annika Herbert, Martin Theuerkauf, and David Bowman

The Black Summer bushfires (2019-2020) cost the Australian economy over 100 billion dollars and burnt a total of 18 million hectares. In just one season, around 20% of Australia's Eucalyptus forests burnt down and billions of animals perished. Recent catastrophic fires in Australia and North America have made scientists and policymakers question how the disruption of First Nations' burning practices has impacted fuel loads. For instance, we have learnt from modern Australian Indigenous communities, historical literature, and art works that Indigenous peoples have used cultural burning to rejuvenate patches of land and preserve open vegetation for hunting and cultural purposes. The advent of British invasion brought a change in the type of fire regimes and landscape management across much of the continent, which may have led to an increase in flammable fuels in forest settings. However, the actual degree of land-cover modification by early settlers has only been often debated in the academic literature and within management stakeholders.

The quantification of past land cover is needed to address such debates. Pollen is the key proxy to track past vegetation changes, but pollen spectra suffer from some important biases e.g. taphonomy, pollen productivity, dispersal capability. Estimating past vegetation cover from sedimentary pollen composition requires to correct for productivity and dispersal biases using empirical-based models of the pollen-vegetation relationship. Such models for quantitative vegetation reconstruction (e.g. REVEALS) have yet been mostly applied in the Northern Hemisphere in the last 15 years - here we present recent applications of this methodology from Australia. We show the quantification of land cover changes through pre- and post- British invasion on multiple records (n=51) across the southeastern Australian region. This represents the first regional application of REVEALS within the Australian continent.

We provide the first empirical evidence that the regional landscape before British invasion was a cultural landscape with limited tree cover as it was maintained by Indigenous Australians through cultural burning. Our findings suggest that the removal of Indigenous vegetation management has altered woodland fuel structure and that much of the region was predominantly open before colonial invasion. The post-colonial land modification has resonance in wildfire occurrence and management under the pressing challenges posed by climate change.

How to cite: Mariani, M., Connor, S., Fletcher, M.-S., Haberle, S., Stevenson, J., Kershaw, P., Herbert, A., Theuerkauf, M., and Bowman, D.: Feeding the flames: how colonialism led to unprecedented wildfires across SE Australia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3238, https://doi.org/10.5194/egusphere-egu23-3238, 2023.

present fires and their drivers
09:45–09:55
|
EGU23-6184
|
ECS
|
Highlight
|
On-site presentation
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton

Fires constitute a key source of emissions of greenhouse gasses and aerosols. Fire emissions can be quantified using models, and these estimates are influenced by the spatial resolution of the model and its input data. Here we present a novel global model based on the Global Fire Emissions Database (GFED) modelling framework for the estimation of fuel consumption and fire carbon emissions at a spatial resolution of 500 m. The model was primarily based on observation-derived data products from MODIS, reanalysis data for meteorology, and an updated field measurement synthesis database for constraining fuel load and fuel consumption. Compared to coarser models, typically with a resolution of 0.25°, the 500-m spatial resolution allowed for increased spatially resolved emissions and a better representation of local-scale variability in fire types. The model includes a separate module for the calculation of emissions from fire-related forest loss, using 30-m Landsat-based forest loss data. We estimated annual carbon emissions of 2.1 Pg C yr-1, of which around 24% was from fire-related forest loss. Fuel consumption was on average a factor 10 higher in case of fire-related forest loss compared to fires without forest loss. Up to now, emission estimates from our new model are based on MODIS burned area with a 500-m resolution, leading to global emissions similar to GFED4s. However, novel high-resolution burned area datasets based on the Landsat and Sentinel-2 missions reveal substantially more global burned area. Our 500-m global fire model provides a suitable framework for converting these burned area products to emissions, with the prospect of substantially higher global emissions.

How to cite: van Wees, D., van der Werf, G. R., Randerson, J. T., Rogers, B. M., Chen, Y., Veraverbeke, S., Giglio, L., and Morton, D. C.: A global model for estimating fuel consumption and fire carbon emissions at 500-m spatial resolution, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6184, https://doi.org/10.5194/egusphere-egu23-6184, 2023.

09:55–10:05
|
EGU23-7449
|
ECS
|
On-site presentation
Kirsten Lees and Tim Lenton

Wildfires are becoming a growing concern in the UK, as climate change increases the occurrence and persistence of periods of hot, dry weather. Vegetation type and management play an important but contested role in UK fire risk and resilience, and questions remain over the best ways to prevent large fires developing. Remote sensing can provide vital data on fire size, severity, and recovery times, but method effectiveness is dependent on understanding specific ecosystems. This research uses ground validation of four wildfires in the UK Peak District National Park to deliver insights which improve interpretation of satellite data in wildfire monitoring. These insights are then applied to a three-year remote sensing database of large wildfires in England and Wales, to give novel results on the links between vegetation type and management, and fire size and severity. Ecosystem resilience and recovery is further explored through analysing the vegetation growth post-fire at three of the four Peak District study sites. This project therefore develops and validates remote sensing methodology in wildfire research by combining field data with satellite imagery to yield new understandings of the relationships between vegetation and fire. 

How to cite: Lees, K. and Lenton, T.: The role of vegetation in UK upland wildfires: Risk, Resilience, and Remote Sensing, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7449, https://doi.org/10.5194/egusphere-egu23-7449, 2023.

10:05–10:15
|
EGU23-11297
|
On-site presentation
Matthias Forkel, Niels Andela, Vincent Huijnen, Christine Wessollek, Alfred Awotwi, Daniel Kinalczyk, Christopher Marrs, and Jos de Laat

Emissions from vegetation fires in tropical forests have the potential to turn the global land carbon sink into a source, affect atmospheric chemistry, and hence air quality. While natural forest fires are a rare phenomenon in tropical forests of South America and are usually of rather low intensity, deforestation fires and small land clearings in systems with high fuel loads can cause intense fires and high emissions. However, the high moisture content in tropical forests causes incomplete combustion and higher emissions of carbon monoxide (CO) than of carbon dioxide. The interacting effects of land use change, fuel load and moisture on fire intensity and emissions is, however, difficult to quantify at large scales because not all of those components are readily available from Earth observations in a consistent way. 

Here, we make use of several satellite products on vegetation, fire activity and atmospheric composition to quantify the effects of land use, fuel loads, fuel moisture on fuel consumption, emission factors and hence on emissions and atmospheric trace gas concentration. First, we use observations of active fires and fire radiative power from the VIIRS and Sentinel-3 SLSTR sensors to map different fire types (forest fires, deforestation fires, small land clearing and agricultural fires, savannah fires). Second, we integrate satellite products of canopy height, above-ground biomass, leaf area index, land cover and soil moisture in a novel data-model fusion framework to estimate fuel loads and moisture in vegetation, surface litter and woody debris. We then combine in a bottom-up approach the fire types with fuel loads and moisture to estimate fuel consumption and fire emissions using default emission factors. Third, we use observations from Sentinel-5p TROPOMI and the Integrated Forecast Systems (IFS) of the Copernicus Atmosphere Monitoring Service to compare the bottom-up estimates with distributions of CO and NOx in the atmosphere, which allows optimising emissions and associated emission factors.

Our reconciled estimates of fire emissions outperform previous CO estimates e.g. from the Global Fire Assimilation System, which demonstrates an improved estimation of fire carbon emissions. The results show that the high fire intensity and emissions in tropical deforestation fires originate from the burning of high loads of woody biomass and coarse woody debris. The high fuel moisture content causes higher emission factors of CO in tropical forests than in savannah fires and hence higher absolute emissions of CO. Our new model approaches and satellite products allow to provide an integrated assessments on the effects of fuel and fire behaviour on fire emissions.

How to cite: Forkel, M., Andela, N., Huijnen, V., Wessollek, C., Awotwi, A., Kinalczyk, D., Marrs, C., and de Laat, J.: Effects of land use, fuel loads and fuel moisture on fire intensity and fire emissions in South America derived by reconciling bottom-up and top-down satellite observations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11297, https://doi.org/10.5194/egusphere-egu23-11297, 2023.

Coffee break
Chairpersons: Rebecca Scholten, Angelica Feurdean, Gabriel Sigmund
10:45–11:05
|
EGU23-7937
|
ECS
|
solicited
|
On-site presentation
Theodore Keeping, Sandy Harrison, and Iain Prentice

Wildfire risk prediction relies on the often-heuristic assessment of diverse fire potential indices, fuel maps, fire weather indices and prior fire activity data. Here we present a model nowcasting daily wildfire genesis probability and expected wildfire sizes in the contiguous US.

Predictors were selected and developed to account for climate, vegetation, topographic and human effects on wildfire genesis. Climate factors are represented by multiple fuel wetting and drying processes at daily to seasonal-scale antecedences, snowpack, and wind. We use GPP to predict fuel mass and recent growth, and dominant vegetation type. Human factors include population, landscape accessibility and ignition sources such as powerlines.

The first stage of the model predicts wildfire genesis probability as a zero-inflated process with an explicit probability of fire preclusion, whilst the second stage models fire sizes according to a generalised extreme value distribution. Nonlinear effects are accounted for via global optimisation for the domain for which each variable drives changes in fire genesis behaviour and the appropriate variable transform.

The model has good predictive and explanatory power, as shown by various performance metrics and the meaningful nonlinear relationships identified in the optimisation process. We show that this method can resolve seasonal wildfire risk dynamics well over smaller ecoregions than the observational record permits, allowing us to quantify the extent to which fire risk is determined by seasonal-scale versus daily-scale effects.

How to cite: Keeping, T., Harrison, S., and Prentice, I.: A New Method for Nowcasting Wildfire Risk, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7937, https://doi.org/10.5194/egusphere-egu23-7937, 2023.

11:05–11:15
|
EGU23-9575
|
On-site presentation
Florent Mouillot, Wentao Chen, Manuel Campagnolo, and Philippe Ciais

The assessment of global burned area from remote sensing is an essential climate variable driving land surface GHG emissions and energy/water budget. Gridded 0.25° or 0.5° monthly burned area have been largely used for biosphere/atmosphere interactions modelling, while recent fire/weather analysis or model developments increasingly request fire events, defined as a fire patch with intrinsic fire spread properties. Pixel level information, the finest resolution from global burned area, defined by their burn date, can be aggregated within a spatio-temporal threshold and delineate these fire events. Uncertainties in burn date, the coarse resolution of pixel resolution, multiple ignition points, or the specified values in spatio-temporal thresholds can however lead to various final fire event delineation. Currently, three major global fire event database exist (FRY, Fire Atlas, GlobFire), mostly derived from MCD64A1 pixel level 500m-resolution burned area. We propose here a new version of FRY, based on MCD64A1 and FireCCI51 at 250m, with an updated pixel aggregation method allowing for single ignition fire patches. Fire patch morphology indicators as elongation, direction, complexity have been conserved from v1.0, with additional information as ignition points from minimum burn date from burned area and more timely-accurate hotspots (VIIRS and MCD14ML), rate of spread, fire Radiative power and burn severity, as well as fraction of land cover affected, based on user requirements. The dataset is delivered as a yearly shapefile, with an attribute table referencing all information on ignition, spread and final shape. Global comparison of major information from FRYv2.0 (fire size distribution, fire number, ROS) will illustrate the effects of increasing spatial resolution and better timing from hotspots provided in this new version, freely available for the scientific community for the period 2001-2020.

How to cite: Mouillot, F., Chen, W., Campagnolo, M., and Ciais, P.: FRYv2.0 : a global fire patch morphology database from FireCCI51 and MCD64A1, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9575, https://doi.org/10.5194/egusphere-egu23-9575, 2023.

11:15–11:25
|
EGU23-3310
|
ECS
|
On-site presentation
Jonas Mortelmans, Anne Felsberg, Gabriëlle De Lannoy, Sander Veraverbeke, Robert Field, Niels Andela, and Michel Bechtold

The Fire Weather Index (FWI) is used worldwide to estimate the danger of wildfires. The FWI system integrates meteorological parameters and empirically combines them into several moisture codes, each representing a different fuel type. These moisture codes are then used in combination with wind speed to estimate a fire danger. Originally, the FWI system was developed for a standard jack pine forest, however, it is widely used by fire managers to assess the fire danger in different environments as well. Furthermore, it is often also used to assess the vulnerability of organic soils, such as peatlands, to ignition and depth of burn. The utility of which is often questioned.

 

This research aims at improving the original FWI for northern peatlands by replacing parts of the original, purely weather-based FWI system with satellite-informed model estimates of peat moisture and water level. These come from a data assimilation output combining the NASA catchment model, including the peat modules PEATCLSM, and Soil Moisture and Ocean Salinity (SMOS) L-band brightness temperature observations. The predictive power of the new, peat-specific FWI (PEAT-FWI) is evaluated against the original FWI against fire data of the global fire atlas from 2010 through 2018 over the major northern peatlands areas. For the evaluation, the fires are split up in early and late season fires, as it is hypothesized that late fires are more hydrological driven, and the predictive power of the PEAT-FWI will thus differ between the two types of fires. Our results indeed indicate that the PEAT-FWI improves the predictive capability of estimating fire risk over northern peatlands in particular for late fires. By using a receiver operating characteristics (ROC) curve to evaluate the predictive power of the FWI against a random estimate, the area under the curve increases by up to 10% for the PEAT-FWI compared to the original FWI. The recent version 7 release of the operational Soil Moisture Active Passive (SMAP) Level-4 Soil Moisture Data Assimilation Product now includes PEATCLSM, thus, the proposed PEAT-FWI is straightforward to include in operational FWI products.

How to cite: Mortelmans, J., Felsberg, A., De Lannoy, G., Veraverbeke, S., Field, R., Andela, N., and Bechtold, M.: PEAT-FWI: Improving the Fire Weather Index for peatlands with Hydrological Modeling and L-band Microwave Observations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3310, https://doi.org/10.5194/egusphere-egu23-3310, 2023.

11:25–11:35
|
EGU23-11559
|
ECS
|
On-site presentation
Thomas Janssen and Sander Veraverbeke

Boreal forests store about one third of the world’s forest carbon and may store even more carbon in the future because of the positive effects of rising atmospheric CO2 concentrations on photosynthesis and plant growth. However, fire frequency and severity have also been increasing in boreal forests in the last decades, which might offset their carbon sink potential. In Eastern Siberia, the dry and hot summers of 2020 and 2021 showed exceptionally high fire activity. However, even large fires that can spread for several months, eventually come to an end. This can be because of a change in the weather or because fires run out of fuels. Here, we aim to quantify the controls of fire growth in Eastern Siberia using high resolution landscape variables and hourly ERA-5 meteorological variables. We harmonized the burned area product from the Fire Climate Change Initiative and active fire product from the Visible Infrared Imaging Radiometer Suite, and derived fire perimeters from them for the period between 2012 and 2021. Along these fire perimeters, we then identified spatial changes in landscape variables (i.e. a decline in tree cover or increase in surface water) and temporal changes in hourly vapor pressure deficit and wind. By doing so, we could attribute causes of why fires stopped spreading.

How to cite: Janssen, T. and Veraverbeke, S.: Identifying the limits to fire growth in Eastern Siberia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11559, https://doi.org/10.5194/egusphere-egu23-11559, 2023.

11:35–11:45
|
EGU23-13307
|
ECS
|
On-site presentation
Chaoqun Ma, Yafang Cheng, and Hang Su

Tropospheric ozone (O3) is a key greenhouse gas and pollutant that is receiving increasing attention globally.  While there are many sources of tropospheric O3, precursors from human activity (Anthro) and open biomass burning (BB) are the only ones that can be controlled. As such, it is crucial for policymakers to understand the relative contributions of the two. However, determining the contribution of O3 can be challenging as it cannot be directly observed. It must be calculated by chemical transportation model (CTM) simulation which could be biased for unreal emission inventory, or estimated by real observations that assumes too simple chemical and transportation processes.

In this paper, we propose a solution by developing a deep learning (DL) model that combines both CTM simulations and observations. The DL model is able to learn a generalized relationship between unobservable O3 contribution from Anthro or BB sectors and observable mixing ratio of tracers simulated by CTM with full chemistry and transportation processes. The DL model then, when applied to observed tracers, could avoid the bias from model to provide an accurate estimation of the contributions in reality.

Our results indicate the contribution from BB to tropospheric remote ozone mixing ratio is no larger than that from Anthro emission from a global perspective, even when uncertainties are deliberately tuned to bias BB. Therefore, the reduction of anthropogenic emissions should be the top priority for controlling global background O3 levels, at least for the time period of 2016-2018 studied.

How to cite: Ma, C., Cheng, Y., and Su, H.: Biomass Burning Contributes Less to Remote Tropospheric Ozone than Human Activity, Indicated by a Deep Learning Approach, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13307, https://doi.org/10.5194/egusphere-egu23-13307, 2023.

11:45–11:55
|
EGU23-1975
|
ECS
|
On-site presentation
Roland Vernooij, Tom Eames, Jeremy Russel-Smith, Cameron Yates, Robin Beatty, Jay Evans, Andrew Edwards, Natasha Ribeiro, Martin wooster, Tercia Strydom, Marcos Giongo, Marco Borges, Carol Barradas, Maximo Menezes, Dave van Wees, and Guido van der Werf

Roughly half of global fire emissions originate from savannas, and emission factors (EF) are used to quantify the amount of trace gases and aerosols emitted per unit dry matter burned. It is well known that these EFs vary substantially even within a single biome but so far quantifying their dynamics has been hampered by a lack of EF measurements. Therefore, global emission inventories currently use a static averaged EF for the entire savanna biome. To increase the spatiotemporal coverage of EF measurements, we collected over 4500 EF bag measurements of CO2, CO, CH4 and N2O using an unmanned aerial system (UAS) and measured fuel parameters and fire severity proxies during 129 individual landscape fires. These measurements spanned various widespread savanna ecosystems in Africa, South America and Australia, with early and late dry season campaigns. We trained random forest (RF) regressors to estimate daily dynamic EFs for CO2, CO, CH4 and N2O at 500×500-meter resolution based on satellite and reanalysis data. The RF models reduced the difference between measured and modelled EFs by 60-85% compared to static biome averages. The introduction of EF dynamics resulted in a spatial redistribution of CO, CH4 and N2O emissions compared to the Global Fire Emissions Database version 4 (GFED4s) with higher emissions in higher rainfall savanna regions. While the impact from using dynamic EFs on the global annual emission estimates from savannas was relatively modest (+2% CO, -5% CH4 and -18% N2O), the impact on local EFs may exceed 60% under dry seasonal conditions.

How to cite: Vernooij, R., Eames, T., Russel-Smith, J., Yates, C., Beatty, R., Evans, J., Edwards, A., Ribeiro, N., wooster, M., Strydom, T., Giongo, M., Borges, M., Barradas, C., Menezes, M., van Wees, D., and van der Werf, G.: Drivers of spatial and temporal variability in savanna fire emission factors, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1975, https://doi.org/10.5194/egusphere-egu23-1975, 2023.

present fires and their impacts
11:55–12:05
|
EGU23-1406
|
ECS
|
Highlight
|
On-site presentation
Martin J. Baur, Andrew D. Friend, and Adam F. A. Pellegrini

Wildfire is a global scale ecosystem phenomenon with substantial impact on the carbon cycle, climate warming, and ecosystem resilience. Fire and the hydrological cycle are strongly interlinked, with water availability determining the amount and combustibility of fuel, and fire influencing infiltration, runoff rates and evapotranspiration. Consequently, understanding soil moisture (SM) and vegetation water content (VWC) dynamics pre- and post-fire is fundamental for predicting fire occurrence, fire severity, and ecosystem recovery. Fire can modulate SM and VWC dynamics by influencing interception of rainfall, soil porosity, plant water uptake, and runoff; however, much evidence for fire effects on the hydrological cycle is obtained at the field- to watershed-scale. Therefore, we ask the following research question: What are the effects of large-scale fire events on SM and VWC dynamics across biomes globally?

Here we use over six years of global SM, VWC and vapor pressure deficit (VPD) derived from different remote sensing datasets to investigate the effects of large-scale fires on SM and VWC dynamics. We apply a dry down framework, only analyzing consecutive observations of decreasing soil moisture, to describe post-fire response rates for SM, VWC and VPD relative to a pre-fire reference state.

We find large scale evidence that the post-fire rate of change of SM over time is more negative, indicating faster water loss. Vegetation recovery, indicated by a positive change in VWC over time, exceeds the pre-fire reference state, which suggests that post-fire recovery is predominantly faster than undisturbed seasonal vegetation growth, likely due to succession of fast-growing plant species. Furthermore, fire affects ecosystem hydrology on shorter timescales as well, reducing diurnal VWC variation over a wide range of SM and VWC conditions. Our findings confirm several trends previously only observed at smaller scales and suggest global remote sensing of SM and VWC can substantially contribute to understanding the dynamics of post-fire plant and soil water status.

How to cite: Baur, M. J., Friend, A. D., and Pellegrini, A. F. A.: Large-scale fire events substantially impact plant-soil water relations across ecosystem types, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1406, https://doi.org/10.5194/egusphere-egu23-1406, 2023.

12:05–12:15
|
EGU23-412
|
ECS
|
On-site presentation
Tiago Ermitão, Célia Gouveia, Ana Bastos, and Ana Russo

Fire is an integral component of ecological dynamics, playing an important role in biome distribution and biomass variability. Nonetheless, fires can also pose a  threat to both ecosystems and humans, by imposing severe economic and social consequences, and potentially contributing to biodiversity loss, carbon loss and soil erosion, whose effects can last from months to years.

The Mediterranean basin is a fire-prone region where vegetation is in general well adapted to fire, with several species showing resistance to fire itself or being able to recover quickly following fire events. However, as a consequence of climate change, more intense and frequent summer hot and dry conditions are expected to occur, which can promote more frequent and severe wildfires, with return periods potentially outpacing recovery times. Understanding recovery dynamics is therefore crucial to assess the impact of changing fire regimes in ecological dynamics and stability of ecosystems. 

In our study, we use the “Enhanced Vegetation Index” (EVI), remotely-sensed by MODIS sensor with a temporal span of 22 years, to evaluate vegetation dynamics before, during and following large fire seasons. We use a mono-parametric recovery model to assess recovery times in different burn scars across the Mediterranean basin, covering different fire regimes and land cover types. We find a tendency for slower recovery in areas that burned more often, which may indicate a decrease in ecosystems’ resilience in the past 22 years.

This study was performed under the frameworks of the 2021 FirEUrisk project (funded by European Union’s Horizon 2020 research and innovation programme under the Grant Agreement no. 101003890) and of the PhD MIT Portugal MPP2030-FCT programme (Grant no.22405886350).

How to cite: Ermitão, T., Gouveia, C., Bastos, A., and Russo, A.: Assessing changes in post-fire vegetation resilience in Mediterranean basin over the past 22 years, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-412, https://doi.org/10.5194/egusphere-egu23-412, 2023.

12:15–12:25
|
EGU23-10389
|
On-site presentation
Dani Or, Hamid Vahdat-Aboueshagh, Eden Furtak-Cole, and Sean A. McKenna

Advances in wildfire modeling have focused on refining atmospheric interactions for obvious links between local airflows, combustion dynamics, fire line advance and smoke plume transport. Yet, lasting impacts of wildfires on landscapes are linked primarily with changes in soil characteristics and alteration of ecological and hydrologic processes. Quantitative assessment of wildfire impacts requires metrics for fire-surface thermal interactions beyond qualitative surrogates such as burn severity used for ecological assessment. The highly transient and localized nature of wildfire intensity and its coarse spatial and temporal representation hinder quantitative translation of wildfire dynamics to soil heat fluxes even with the most advanced wildfire models (e.g., QuicFire, WRF-Fire, WFDS). Inspired by the pioneering works of Byram, Rothermel and Albini, we seek to derive high resolution information on fire line intensities from highly resolved fuel maps informed by fire line dynamics derived from numerical wildfire model representation. This hybrid downscaling approach (limited by the quality and resolution of fuel maps) offers a means for constraining soil surface heat fluxes at resolutions relevant to quantifying critical temperatures and duration at depth to estimate pyrolysis of soil organic carbon and the degree of soil structure alteration. Examples will be presented and discussed. 

How to cite: Or, D., Vahdat-Aboueshagh, H., Furtak-Cole, E., and A. McKenna, S.: Towards mechanistic representation of wildfire effects on soil – downscaling to quantify subsurface heat fluxes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10389, https://doi.org/10.5194/egusphere-egu23-10389, 2023.

Lunch break
Chairpersons: Fang Li, Rebecca Scholten, Angelica Feurdean
14:00–14:10
|
EGU23-5803
|
ECS
|
Highlight
|
On-site presentation
Antonio Girona-García, Cristina Santín, Diana Vieira, and Stefan Doerr

Wildfires burn on average 448 million hectares globally every year, releasing around 2.2 Pg of carbon (C) into the atmosphere [1, 2]. The net effect of wildfires in the C cycle goes, however, beyond emissions and involves many other interacting processes. Among those, there is a significant knowledge gap on the role of post-fire soil organic carbon (SOC) erosion as a carbon sink mechanism.

Post-fire erosive response is greatly enhanced by the direct and indirect effects of wildfires on soil and vegetation, such as the loss of protective cover and soil structure or the development of a water-repellent layer [3]. In addition, biomass and soil organic matter undergo quantitative and qualitative changes during wildfires, such as the formation of pyrogenic carbon, highly resistant to degradation. The resulting PyC and non-PyC carbon fractions, with contrasting physical properties and chemical stability, will be differently redistributed and mineralized during the erosion process [4]. Ultimately, post-fire SOC erosion will act as a carbon sink when the post-fire burial and stabilization of eroded carbon, together with the recovery of net primary production and soil organic carbon content, exceed the SOC losses during its post-fire transport [5]. All these processes have been scarcely investigated and poorly quantified to the date. In this presentation, we will provide new insights into this potential C sink mechanism, critically reviewing the state of the art and highlighting key research gaps.

References

[1] Boschetti et al., 2021. Global Wildfire Information System (GWIS). https://gwis.jrc.ec.europa.eu/apps/country.profile/downloads

[2] Randerson et al., 2012. J Geophys Res. https://doi.org/10.1029/2012JG002128

[3] Shakesby & Doerr, 2006. Earth-Sci Revs. https://doi.org/10.1016/j.earscirev.2005.10.006

[4] Doetterl et al., 2016. Earth-Sci Revs. https://doi.org/10.1016/j.earscirev.2015.12.005

[5] Santín et al., 2015. Glob Change Biol. https://doi.org/10.1111/gcb.12800

How to cite: Girona-García, A., Santín, C., Vieira, D., and Doerr, S.: Which is the role of post-fire SOC erosion in the C cycle?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5803, https://doi.org/10.5194/egusphere-egu23-5803, 2023.

14:10–14:20
|
EGU23-17450
|
ECS
|
Highlight
|
On-site presentation
Thomas D. Hessilt, Sander Veraverbeke, Emily Ogden, Jason Paul, Merritt Turetsky, Max van Gerrevink, Raquel Alfaro-Sanchez, Oleg Melnik, Rebecca C. Scholten, and Jennifer Baltzer

Fire is a major disturbance in the boreal forests of the high northern latitude. Fire extent and severity have been increasing in recent decades, and the occurrence of overwintering ‘zombie’ fires has been linked to recent fire extremes. Overwintering fires are fires which were seemingly extinguished at the end of the boreal fire season yet smolder during winter to re-emerge as a flaming fire in the subsequent spring. So far, overwintering fires have only been investigated using satellite imagery. Here, for the first time, we show preliminary results from a field campaign that measured in situ impacts of fires that overwintered from 2014 to 2015 in the Canadian Northwest Territories. We measured among other the burn depth in organic soils, and characterized micro-topography. We also qualitatively assessed how fires may have overwintered. We compared nine overwintering fire sites, which burned during both 2014 and 2015, with six sites that only burned in 2014 and five nearby unburned sites. The average burn depth (±SD) of the overwintering fires was 6.8 ± 1.6 cm and significantly deeper compared to 6.1 ± 1.2 cm in the single fire sites (P < 0.01). Somewhat surprisingly, the majority of overwintering fires occurred in mesic sites with large productive trees. Only two overwintering sites were sampled in mesic-subhygric to subhygric sites dominated by black spruce (Picea mariana). The unburned control sites often featured a micro-topography of hummocks and hollows. This micro-topography was leveled in overwintering fires sites because of severe burning in organic soils. In overwintering sites, most of the organic layer was consumed. This may have led to prolonged smoldering in the root systems of trees. Our results are the first to quantify the burn depth of overwintering fires, and also show that overwintering does not only happen through deep smoldering in organic soils, yet can also occur from smoldering in tree boles and root systems of burned and fallen trees.

How to cite: Hessilt, T. D., Veraverbeke, S., Ogden, E., Paul, J., Turetsky, M., van Gerrevink, M., Alfaro-Sanchez, R., Melnik, O., Scholten, R. C., and Baltzer, J.: First results of a field campaign focused on overwintering zombie fires, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17450, https://doi.org/10.5194/egusphere-egu23-17450, 2023.

14:20–14:30
|
EGU23-2233
|
ECS
|
On-site presentation
Melissa Torres, Caroline Poyntner, Sampriti Chaudhuri, Marc Pignitter, Hannes Schmidt, Thilo Hofmann, and Gabriel Sigmund

An increase in fire-prone conditions in non-fire adapted regions is rooted in climatic and anthropogenic changes. Such pyrogeographical shifts are observable, for example, in alpine regions. In 2021, Austria, experienced a fire larger than 100 ha for the first time in a century in the Schneeberg-Rax mountain region. In depth understanding of post-fire effects on carbon cycling at such non-fire adapted sites is still scarce. To help close this knowledge gap, post-fire changes were investigated at the abovementioned site, including soil organic matter composition and soil chemical conditions. 

Samples were taken immediately after the fire, 3 months, 6 months and 12 months thereafter from four sampling sites. Selected sites consisted of 1. a pine forest affected by a crown fire, 2. a pine and beech mixed forest affected by a surface fire, and two non-fire affected controls with similar site conditions (vegetation, slope, altitude, and exposition). Samples were analyzed for pH, carbon content, elemental composition, leachable dissolved organic carbon and trace elements, organic matter composition, and environmentally persistent free radical concentrations. 

pH increased after the fire at both sites investigated. This increase was the strongest (up to 1.5 units) immediately after the fire but was still substantial 1 year after the fire. Carbon contents decreased approximately 2fold in the crown fire affected soil compared to the control soil, but remained similar between surface fire affected soil and the respective control. However, aromaticity of bulk carbon and the leachable fraction increased in both fire-affected soils, which can be related to the formation of pyrogenic carbon during the fire. Pyrogenic carbon is a highly aromatic and recalcitrant carbon pool produced during incomplete combustion of biomass. Pyrogenic carbon can also contain substantial amounts of environmentally persistent free radicals (EPFR), which can form reactive oxygen species, which can induce oxidative stress on microbiota. Our EPFR measurements showed an increase by at least 1.5 orders of magnitude of EPFR in fire affected soils. This study suggests that changes in soil carbon cycling can be expected following fires in non-adapted alpine forests. 

How to cite: Torres, M., Poyntner, C., Chaudhuri, S., Pignitter, M., Schmidt, H., Hofmann, T., and Sigmund, G.: Fire impacts on soil carbon in a non-fire adapted alpine forest, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2233, https://doi.org/10.5194/egusphere-egu23-2233, 2023.

14:30–14:40
|
EGU23-3695
|
ECS
|
On-site presentation
Elizah Stephens, Aral Greene, Alexander Krichels, and Peter Homyak

Background:

Fires burn roughly 3% of Earth’s land surface each year and are predicted to become more frequent and severe as human-caused climate change progresses. Fires can drive ecosystem N loss by volatilizing N bound in plant biomass to the atmosphere and by leaving behind ash rich in ammonium (NH4+) and organic N that can run off when it rains. While N volatilization and runoff account for a large fraction of N loss after fires, budget imbalances suggest soil emissions of nitric oxide (NO) and nitrous oxide (N2O) may also be significant N loss pathways after fire. Identifying sources of NO and N2O is important because NO is a precursor for tropospheric O3 which causes high rates of asthma hospitalizations,and N2O is a powerful greenhouse gas with 300× the warming potential of CO2. Soil emissions of NO and N2O are largely governed by the microbial processes of nitrification and denitrification. Under aerobic conditions typical of dry soils, nitrifying organisms such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) oxidize NH4+ to nitrate (NO3-) and release NO and N2O as byproducts. AOA and AOB process N with different efficiencies, suggesting shifts in AOA:AOB ratios may change N emissions. Specifically, AOB are dominant in soils with high NH4+and pH and produce higher NO and N2O emissions. Since such soil conditions are frequently observed after fires, we hypothesize NO and N2O emissions will increase as AOB communities become dominant. To test this, we collected soil cores from 5 plots in the Sequoia National Park, CA over a time series starting two weeks after a high severity chaparral fire. We selectively inhibited AOA and AOB communities to measure their contributions to NO and N2O emissions. We also measured the isotopic composition of N2O emissions from these soils using an LGR isotopic N2O analyzer to better understand the processes responsible for post-fire N2O production.

Results/Conclusions

One month after the fire, soil bulk emissions of NO over 72hrs were 1.5 times higher in the burned plots (101.4 ± 22.4 µg N-NO/g soil burned; 67.1 ± 19.3 µg N-NO/g soil unburned; ±SE). Bulk soil emissions of N2O over 72hrs were 7.5 times lower in burned plots compared to before the fire (0.0616 ± 0.04 ng N-N2O/g soil burned; 0.463 ± 0.19 ng N-N2O/g soil unburned; ±SE). Although the effects of fire on nitrifier communities were not significant at one month post-fire (Control: p=0.14, AOA: p=0.09, AOB: p=0.162), both AOA and AOB contributions to NO emissions increased in response to fire. Results for nitrifier contributions to N2O emissions were highly variable and non-significant with no clear trends as all N2O emissions were near zero. Further analysis over the time series may yield clearer results as microbial communities have more time to recover. Pairing these data with isotopic information (in progress) may yield one of the most in-depth understandings of post-fire NO and N2O emissions to date.

How to cite: Stephens, E., Greene, A., Krichels, A., and Homyak, P.: Wildfires alter nitrifier communities and increase soil emissions of NOx but not N2O in California chaparral, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3695, https://doi.org/10.5194/egusphere-egu23-3695, 2023.

14:40–14:50
|
EGU23-13941
|
Highlight
|
On-site presentation
Farid Juillot, Gael Thery, Cecile Quantin, Quentin Bollaert, Michael Meyer, Thomas Quiniou, Philippe Jourand, Marc Ducousso, Emmanuel Fritsch, and Guillaume Morin

During the last decade, the world faced record-breaking giant fires as observed in Australia and California, a trend that is expected to increase in the forthcoming years due to climate change (Palinkas, 2020; Sharples et al., 2016; van Oldenborgh et al., 2021). In addition to their large ecological impacts, wildfires are more and more regarded for their potential threat to human health through air pollution (Xu et al., 2020). However, water pollution resulting from wildfires represents an underestimated pathway for wildfires-induced health risk (Abraham et al., 2017). This latter impact is related to the heat generated by wildfires that can propagate towards several centimeters in the soil and transform/destroy soil components. In addition to weakening soil physical stability, such transformation/destruction can change the speciation of potentially toxic elements (PTEs) that are associated with these soil components, leading to enhanced mobility towards waterways (Abraham et al., 2017; Terzano et al., 2021). One notable PTE is chromium, which is naturally present in soils mostly as trivalent Cr(III), but can represent an environmental and health issue when occurring as hexavalent Cr(VI). Recent studies reported Cr(III) oxidation to Cr(VI) upon laboratory-heating of Cr(III)-doped Fe-oxyhydroxides (Burton et al., 2019a; 2019b). Besides, Cr(III) oxidation to Cr(VI) upon controlled heating was also demonstrated for different types of soils (Burton et al., 2019b; Rascio et al., 2022; Thery et al., 2023). All these considerations suggest a significant effect of wildfires on Cr(III) oxidation to Cr(VI) in soils, with a possible influence on Cr mobility that could further impact freshwater quality. This risk of freshwater Cr(VI) pollution is expected to particularly concern ultramafic catchments because of the related occurrence of Cr-rich soils.

We have tried to address this question by performing laboratory-heating of several soils types (Ferralsols, Cambisols and Vertisols) developed on various geological settings (ultramafic, mafic and volcano-sedimentary) in New Caledonia, a French overseas territory which is a good representative of wildfires-threatened tropical ultramafic catchments (Toussaint, 2020). The results obtained revealed a significant influence of soil heating on Cr(III) oxidation to Cr(VI), followed by an enhanced Cr(VI) mobility, in all soil types. However, the magnitude of Cr(III) to Cr(VI) oxidation and Cr mobility depended on the actual nature of the soil, Ferralsols showing the highest Cr(VI) release compared to Cambisols and Vertisols. These differences were further interpreted on the basis of the changes in Cr speciation (including redox) induced by laboratory-heating of the investigated soils, as revealed by synchrotron-based X-ray absorption spectroscopy analyses. Finally, a simple risk assessment relying on the hypothesized concentration of suspended particulate matter (SPM) issued from burned soils in the related waterways allowed to emphasize a risk of wildfires-induced freshwater Cr(VI) pollution for ultramafic catchments composed of Ferralsols (Thery et al., 2023). Beyond the single case of New Caledonia, the results of this study point to the need to foster collaborative studies in order to further evaluate this risk of wildfires-induced freshwater Cr(VI) pollution at tropical ultramafic catchments on a global scale.

How to cite: Juillot, F., Thery, G., Quantin, C., Bollaert, Q., Meyer, M., Quiniou, T., Jourand, P., Ducousso, M., Fritsch, E., and Morin, G.: Wildfires, chromium and freshwater quality at tropical ultramafic catchments : A prospective study on laboratory-heated soils from New Caledonia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13941, https://doi.org/10.5194/egusphere-egu23-13941, 2023.

future fires and models
14:50–15:00
|
EGU23-7379
|
solicited
|
Highlight
|
On-site presentation
Lars Nieradzik, Hanna Lee, Paul Miller, Jörg Schwinger, and David Wårlind

Within the framework of the project IMPOSE (Emit now, mitigate later? IMPlications of temperature OverShoots for the Earth system) six idealized emission-overshoot simulations have been performed with the Earth System Model NorESM2-LM2 and used as forcing for the 2nd generation dynamic global vegetation model LPJ-GUESS with its fire-model SIMFIRE-BLAZE to investigate the impact of different CO2 overshoots on global wildfire regimes.

The simulations describe a set of scenarios with high, medium, and low accumulative CO2 emissions and each of which has a short (immediate) and a long (100 years) peak of accumulative CO2 emissions before declining towards a baseline simulation of 1500 PgC accumulatively emitted within the first 100 years.

The results show that the height of the overshoot has an impact on global fire regimes while its duration does not seem to play a significant role 200 years after peak CO2. Overall, we can see that changes in vegetation composition following the temperature anomaly are the main driver for changes in global wildfire frequency. While in the low overshoot scenarios burnt area has almost converged towards the baseline simulation, the extremest scenarios show the lowest burnt area at the end of the simulation period, indicating that vegetation changes, especially in low latitudes, have been most significant and/or are still ongoing.

How to cite: Nieradzik, L., Lee, H., Miller, P., Schwinger, J., and Wårlind, D.: Changes in global fire regimes under idealized overshoot scenarios, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7379, https://doi.org/10.5194/egusphere-egu23-7379, 2023.

15:00–15:10
|
EGU23-9791
|
Highlight
|
On-site presentation
Cynthia Whaley, Courtney Schumacher, Montana Etten-Bohm, Vivek Arora, David Plummer, Jason Cole, Michael Lazare, and Ayodeji Akingunola

Lightning is an important atmospheric process for igniting forest fires – often in remote locations where they are not easily suppressed – which results in potentially large emissions of many pollutants and short-lived climate forcers. Lightning also generates reactive nitrogen, resulting in the production of tropospheric ozone, the third most important greenhouse gas. Furthermore, the changing climate is expected to change the frequency and location of lightning. As such, lightning is an important component of climate models. The Canadian Atmospheric Model, CanAM, is one such climate model that did not contain an 'online' lightning parameterization. Fire ignition in CanAM was done via an unchanging climatological lightning input. In this study, we have added a new logistical regression lightning model (Etten-Bohm et al, 2021) into CanAM, creating the capacity for future lightning predictions with CanAM under different climate scenarios. The modelled lightning and fire area burned were evaluated against measurements in a historical period with good results. Then we simulate lightning and fire area burned in a future climate scenario in order to provide an estimate on how lightning and its impacts will change in the future. This study also presents the first time that CanAM’s land fire model was used online with its atmosphere to fully simulate fires in the global earth system.

Reference:

Etten-Bohm, M., J. Yang, C. Schumacher, and M. Jun : Evaluating the relationship between lightning and the large-scale environment and its use for lightning prediction in global climate models, JGR-atmospheres, 126, e2020JD033990, 2021.

How to cite: Whaley, C., Schumacher, C., Etten-Bohm, M., Arora, V., Plummer, D., Cole, J., Lazare, M., and Akingunola, A.: Lightning in a changing climate and its impacts on fire area burned, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9791, https://doi.org/10.5194/egusphere-egu23-9791, 2023.

15:10–15:20
|
EGU23-12604
|
On-site presentation
Matthew Forrest, Chantelle Burton, Markus Drüke, Stijn Hantson, Fang Li, Joe Melton, Lars Nieradzik, Sam Rabin, Stephen Sitch, Chao Yue, and Thomas Hickler

Fire-enabled dynamic global vegetation models (DGVMs) can be used to study how fire activity responds to its main drivers, including climate/weather, vegetation and human activities, at coarse spatial scales. Such models can also be used to examine the effects of fire on vegetation, and, when embedded in Earth system models, investigate the feedback of fire on the climate system. Thus they are valuable tools for studying wildfires. Accordingly, the Fire Model Intercomparison Project (FireMIP) was established to evaluate and utilise these models using consistent protocols.

Here we present the second round of FireMIP simulations to focus historic wildfire drivers (1901 to present). A six-member ensemble of simulations from fire-enabled DGVMs was compared to remotely-sensed burnt area observations and to the previous round of historical FireMIP simulations. We found that the model skill when simulating spatial patterns of burnt area shows modest improvements compared to the previous FireMIP round, and that the simulations mostly reproduce the decreasing trend in global burnt area found over the last two decades. However, whilst the broad global patterns are reasonable, there are considerable discrepancies with regards to regional agreement and timing of burnt area. Furthermore, the models show diverging trends in the pre-satellite era.

To investigate further and inform future model development, we explored the residuals between simulated burnt area from the FireMIP models and remotely-sensed burnt area as a function of climate, vegetation, anthropogenic and topographic variables using generalised additive models (GAMs). We found some common responses across the models, with many over-predicting fire activity in arid/low productivity areas and all models under-predicting at low road density. However, with respect to other variables, such as wind speed and cropland fraction, the models residuals showed divergent responses. It is anticipated that these results should aid further development of global fire models in terms of driving variables, process representations and model structure.

How to cite: Forrest, M., Burton, C., Drüke, M., Hantson, S., Li, F., Melton, J., Nieradzik, L., Rabin, S., Sitch, S., Yue, C., and Hickler, T.: Causes of uncertainty in simulated burnt area by fire-enabled DGVMs, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12604, https://doi.org/10.5194/egusphere-egu23-12604, 2023.

15:20–15:30
|
EGU23-11992
|
On-site presentation
Niels van Manen, Albert Buxó, Linde Egberts, Laura Houwaard, Lennard Jacobsen, Jip Keesom, Martijn Reijners, David van Slooten, Anneloes Teunisse, and Anoek van Tilburg

Climate change is expected to cause prolonged and more severe droughts in Europe, increasing landscape fire occurrence. Since The Netherlands has a high population density in areas typified as ‘Wildland-Urban Interface’, a genuine risk for Dutch society arises. Landscape management, such as prescribed burning, can reduce fire risk. Prescribed burning is executed by intentionally burning the low and understory vegetation, limiting fuel for a landscape fire, under controlled conditions. In this interdisciplinary research, conducted by a team of (early career) researchers from climate science, cultural studies, hydrology, mathematics and spatial economics, we aim to assess whether prescribed burning can be used in The Netherlands as a fire risk reduction tool in natural areas with a high fire risk.

 

The Netherlands has a well-developed flood management system. However, it lacks such holistic approaches to landscape fire management. Landscape managers and researchers can learn from Dutch flood management by applying the secondary objective, improvement of spatial quality, to prescribed burning. In this research we assess the potential for improving spatial quality through prescribed burning, by adapting the spatial quality framework of the Dutch Room for the River project. Our framework looks at the three pillars burning effectiveness, ecological robustness, and cultural meaning at the potential prescribed burning sites. Burning effectiveness is highest in natural areas (Natura 2000 sites), with high fire risk and the presence of low vegetation. Ecological robustness measures the disturbance prescribed burning could cause in a landscape. Disturbance depends on the burning frequency and intensity, as well as on the type of vegetation that is burned and the usage of the area. In groundwater protection areas, seepage of harmful elements could cause more disturbance. These areas are therefore excluded from the analysis. From the perspective of cultural meaning, social perceptions influence the measure’s performance. Cultural significance and landscape identification provide various perspectives on fires and prescribed burning. Categorizing the different levels of engagement, based on an engagement pyramid, can deliver a basis for implementing prescribed burning.

 

Preliminary analyses result in a selection of 15 Natura 2000 sites in The Netherlands where prescribed burning could be feasible, varying from the Voornes Duin (14 km2) to the Veluwe (885 km2). These areas are mostly vegetated with coniferous and mixed forests. Prescribed burning potentially causes more disturbance in grasslands. However, since none of the 15 areas contain more than 24% grassland, prescribed burning could still be feasible at all locations. In the area of the Veluwe, qualitative interviews with the local population indicate support for fire management, such as prescribed burning, as they are aware of the risks imposed by landscape fires.

 

The final research results can contribute to the improvement of fire management in both The Netherlands and other North-Western European countries with similar vegetation and climate change effects.

How to cite: van Manen, N., Buxó, A., Egberts, L., Houwaard, L., Jacobsen, L., Keesom, J., Reijners, M., van Slooten, D., Teunisse, A., and van Tilburg, A.: Assessing the feasibility of prescribed burning as a fire risk reduction tool for The Netherlands, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11992, https://doi.org/10.5194/egusphere-egu23-11992, 2023.

15:30–15:40
|
EGU23-3332
|
ECS
|
On-site presentation
Andreia F. S. Ribeiro, Lucas Santos, Maria R. Uribe, Rafaella A. Silvestrini, Ludmila Rattis, Marcia N. Macedo, Douglas C. Morton, James T. Randerson, Sonia I. Seneviratne, Jakob Zscheischler, and Paulo M. Brando

Agricultural expansion and ongoing climate change are rapidly altering the fire regime of natural ecosystems along the Cerrado-Amazon biome boundary. While agricultural intensification has driven a decrease in fire ignitions in some regions, agricultural expansion has increased fire usage in other landscapes for deforestation and managing pasturelands. These contrasting patterns of fire activity across different land-use frontiers limits our ability to accurately predict where and when fires may occur, particularly under the context of climate change.

To predict fire activity with land-use transitions, we modelled fire probability as a function of the age of different land-use transitions across the Amazon and Cerrado. We investigated annual land-use and associated burned areas based on the MapBiomas Collection 6.0 and MapBiomas Fire Collection 1.0 data, respectively, from 1986 to 2020. This allowed us to quantify how the time-since conversion of native vegetation (forest, savanna, and grassland) to pasture and farming influence fire occurrence. Additionally, we explored the joint impact of land-use change and climate extremes in fire activity in terms of estimated vapor pressure deficit (VPD) and maximum cumulative water deficit (MCWD), two common measures of flammability and drought impact. 

Our results confirm that transition age is a strong predictor of fire probability. They also suggest that fire probability increases (decreases) at different rates before (after) clearing in Amazon and Cerrado. The role of climate extremes in modulating burning activity associated with land-use transitions varied by biome, post-fire land use, and the size of the burned area associated with the conversion. These findings provide insight into incorporating the effect of land-use transition age on ignition probability for fire modelling in combination with climate drivers. From an operational point of view, our results aim to contribute to environmental policies capable of sustaining ecosystem integrity at the ecotone between the Amazon and Cerrado biomes.

How to cite: Ribeiro, A. F. S., Santos, L., Uribe, M. R., Silvestrini, R. A., Rattis, L., Macedo, M. N., Morton, D. C., Randerson, J. T., Seneviratne, S. I., Zscheischler, J., and Brando, P. M.: How changes in ignition sources influence fire probability in the Amazon and Cerrado biomes: a perspective based on frontier age, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3332, https://doi.org/10.5194/egusphere-egu23-3332, 2023.

Posters on site: Tue, 25 Apr, 14:00–15:45 | Hall A

Chairpersons: Gabriel Sigmund, Liza McDonough, Rebecca Scholten
A.190
|
EGU23-16504
Michał Słowiński, Milena Obremska, Dashtseren Avirmed, Michał Woszczyk, Saruulzaya Adiya, Dominika Łuców, Agnieszka Mroczkowska, Agnieszka Halaś, Witold Szczuciński, Andrzej Kruk, Mariusz Lamentowicz, Joanna Stańczak, and Natalia Rudaya

Recent years have seen rapid climatic changes in Central Asia, particularly Mongolia. An increase in the thickness of the active layer above permafrost and considerable changes to the vegetation structure are likely outcomes of the long-term temperature rise and precipitation changes. The management of future habitats or the biodiversity of northern Mongolia faces significant difficulties from rising temperatures, prolonged and frequent droughts, and gradual permafrost degradation. Our knowledge of the historical processes involved in permafrost degradation and the ensuing ecological effects is still mostly incomplete. These connections may be used to explain changes in the fire regime, permafrost melting, and plant distribution in the Khentii mountains region. Therefore, based on a multiproxy study of peat archive data, we provide the first high-resolution fire history from northeastern Mongolia over the last 1000 years (micro- and macroscopic charcoals, charcoal size classes and morphotypes, peat geochemistry). We examined microscopic and macroscopic charcoal particles as a proxy for fire activity. We also tracked changes in regional and local plant composition using pollen data. To investigate how changes in fire regimes and the climate affect the functioning of the peatland ecosystem, we also conducted a geochemical analysis.

Additionally, to better comprehend the changes in earlier fire regimes and fire-vegetation connections, we employed the morphotypes of macrocharcoal to pinpoint vegetation burning. This study's primary objective is to evaluate the impact of human behavior, vegetation, and prolonged droughts on the incidence of fire regime transitions during the past 1000 years in Central Asia permafrost marginal zone (Mongolia). The findings showed that most of the fires in the area were probably started by natural causes, presumably connected to heatwaves that resulted in prolonged droughts. We have established a connection between increased fires and the local weather phenomena known as "dzud", a catastrophic confluence of winter snowfall and droughts that impacts fire intensity.

The study is the result of research project No. 2017/01/X/ST10/01216 and 2018/31/B/ST10/02498 funded by the Polish National Science Centre.

How to cite: Słowiński, M., Obremska, M., Avirmed, D., Woszczyk, M., Adiya, S., Łuców, D., Mroczkowska, A., Halaś, A., Szczuciński, W., Kruk, A., Lamentowicz, M., Stańczak, J., and Rudaya, N.: History of fire regime shifts during the last 1000 years in Northeastern Mongolia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16504, https://doi.org/10.5194/egusphere-egu23-16504, 2023.

A.191
|
EGU23-2932
|
Pauline Treble, Campbell Micheline, Andy Baker, McDonough Liza, and Kosarac Nevena

Cave stalagmites (speleothems) are highly-valued archives of environmental information owing to their preservation of climate sensitive proxies and well-defined chronologies.  Yet the reconstruction of fire history from stalagmites is a relatively unexplored approach, with some advantages over traditional fire proxy archives.  For example, stalagmites may contain annual laminae (visible or chemical) which can be exploited for seasonal to annual proxy information with precise chronologies.  Thus stalagmites have the potential to yield annually-resolved records of fire and climate that could be used to (1) better understand the fire-climate relationship, (2) fire recurrence interval information, (3) understand ecosystem resilience and (4) inform land management policy.

The development of fire proxies from stalagmites is still in its infancy. Robust interpretations of any proxy information relies on an understanding of the environmental processes that lead to the preservation of proxies in the archive.  Cave stalagmites may record fire history via dripwater, or via the cave entrance as aerosols.  The focus here is on the transportable constituents in dripwater such as solutes, colloids and suspended matter.  A fire event produces ash (a source of leachates) and can alter soil properties (hydrophobicity, pH, organic matter etc) producing temporary enrichments (or depletions) in transported constituents via dripwater.  The resulting signal may be detected in stalagmites using high-resolution methods such as laser ablation mass spectrometry, fluorescence and infrared microscopy techniques.  Cave depth is an important factor in the preservation process with the detection of a fire signal more likely to be observed in dripwater from shallow caves (e.g. 5-10 m) owing to the potential for attenuation and mixing that may occur in deeper caves (Campbell et al., 2022).  However, owing to the karstification of carbonate rocks which host caves, there commonly exists different flow types: diffuse/slow flow through the matrix, preferential/fast flow through fractures and conduits.  Fracture (or conduit) influenced flowpaths have higher permeability and enhance rapid and deep percolation of water from the surface towards the cave.  Several studies have shown that stalagmites fed by dripwater with a fracture-flow component contain higher concentrations of soil-derived trace metals and organics indicating a stronger hydrological connection with the surface.  It logically follows that fracture-influenced flowpaths are more likely to transmit proxies for fire.  Furthermore, flowpaths may be a more important factor than cave depth in some settings, e.g., Campbell et al. (2022) presented a case study of a historical fire event recorded in a stalagmite that was located ~40 m below the surface.  

Understanding the hydrological setting of a cave system including rainfall recharge and flowpaths is valuable in the interpretation of speleothem records in general.  This contribution presents a conceptual model illustrating how these factors influence the preservation of fire proxies in stalagmites and makes recommendations for ideal sample selection for fire proxy records based on cave characteristics as well as stalagmite attributes such as morphology and colour.

Campbell. M. et al., Speleothems as Archives for Palaeofire Proxies. ESS Open Archive. July 24, 2022. DOI:10.1002/essoar.10511989.1

How to cite: Treble, P., Micheline, C., Baker, A., Liza, M., and Nevena, K.: Hydrological conceptual model for reconstructing fire history from cave stalagmites, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2932, https://doi.org/10.5194/egusphere-egu23-2932, 2023.

A.192
|
EGU23-5429
|
ECS
Kevin Ohneiser, Albert Ansmann, Jonas Witthuhn, Hartwig Deneke, Alexandra Chudnovsky, Gregor Walter, and Fabian Senf

Wildfire smoke is known as a highly absorptive aerosol type in the shortwave wavelength range. The absorption of Sun light by optically thick smoke layers results in heating of the ambient air. This heating is translated into self-lofting of the smoke up to more than 1 km in altitude per day. The main goal is to demonstrate that radiative heating of intense smoke plumes is capable of lofting them from the lower and middle free troposphere (injection heights) up to the tropopause without the need of pyrocumulonimbus (pyroCb) convection. The further subsequent ascent within the lower stratosphere (caused by self-lofting) is already well documented in the literature. Simulations of heating rates which are then converted into lofting rates are conducted by using the ECRAD (European Centre for Medium-Range Weather Forecasts Radiation) scheme. As input parameters thermodynamic profiles from CAMS (Copernicus Atmosphere Monitoring Service) reanalysis data, aerosol profiles from ground-based lidar observations, radiosonde potential temperature profiles, CALIOP (Cloud Aerosol Lidar with Orthogonal Polarization) aerosol measurements, and MODIS (Moderate Resolution Imaging Spectroradiometer) aerosol optical depth retrievals were used. 


The sensitivity analysis revealed that the lofting rate strongly depends on aerosol optical thickness (AOT), layer thickness, layer height, and black carbon (BC) fraction. We also looked at the influence of different meteorological parameters such as cloudiness, relative humidity, and potential temperature gradient. Lofting processes in the stratosphere observed with CALIOP after major pyroCb events (Canadian fires, 2017, Australian fires 2019-2020) are compared with simulations to demonstrate the applicability of our self-lofting model. We analyzed long-term CALIOP observations of Siberian smoke layers and plumes evolving in the troposphere and UTLS (upper troposphere and lower stratosphere) region over Siberia and the adjacent Arctic during the summer season of 2019 and found several indications (fingerprints) that self-lofting contributed to the vertical transport of smoke. We hypothesize that the formation of a near-tropopause aerosol layer, observed with CALIOP over several months, was the result of self-lofting processes because this is in line with the self-lofting simulations. 


We will show a detailed analysis of tropospheric and stratospheric smoke lofting rates based on simulations and observations.

How to cite: Ohneiser, K., Ansmann, A., Witthuhn, J., Deneke, H., Chudnovsky, A., Walter, G., and Senf, F.: Smoke self-lofting towards the lower stratosphere: an alternative process to pyroCb-lofting, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5429, https://doi.org/10.5194/egusphere-egu23-5429, 2023.

A.193
|
EGU23-6083
|
ECS
Katie Blackford, Apostolos Voulgarakis, Colin Prentice, Chantelle Burton, and Matthew Kasoar

Anthropogenic activities and climate change are increasing the vulnerability of carbon rich peatlands to wildfires. Peat fires, which are dominated by smouldering combustion, are some of the largest and most persistent wildfires on Earth. Across the northern high latitudes, peat fires have the potential to release vast amounts of long term stored carbon and other greenhouse gases and aerosols. Consequently, peat fires can have huge implications on the carbon cycle and result in a positive feedback effect on the climate system. Peat fires also impact air quality and can lead to haze events, with major impacts on human health. Despite the importance of peat fires they are currently not represented in most fire models, leading to large underestimations of burnt area and carbon emissions in the high latitudes. Here, I present a representation of peat fires in the JULES-INFERNO fire model (INFERNO-peat). INFERNO-peat improves the representation of burnt area across the high latitudes, with notable areas of improvement in Canada and Siberia. INFERNO-peat also highlights a large amount of interannual variability in carbon emissions from peat fires. The inclusion of peat fires into JULES-INFERNO demonstrates the importance of representing peat fires in models, and not doing so may heavily restrict our ability to model present and future fires and their impacts across the northern high latitudes.

How to cite: Blackford, K., Voulgarakis, A., Prentice, C., Burton, C., and Kasoar, M.: Representing Northern High Latitude Peat Fires in the JULES-INFERNO Fire Model, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6083, https://doi.org/10.5194/egusphere-egu23-6083, 2023.

A.194
|
EGU23-6286
|
ECS
Jin-Soo Kim, Hyo-Jeong Kim, and Soon-Il An

CO2 emission from biomass burning (BB) is one of the essential elements of the global carbon budget, with its annual mean of about 2.0 PgC/year equivalent to 15 % of 2020 fossil fuel emissions. However, while a global increase in fire-prone weather is projected alongside climate change, a quantitative understanding of how much carbon will further be released due to increased fires is highly limited, which could result in large uncertainty in meeting the net zero target. Thus, in this study, we evaluate future changes in fire-prone weather based on the fire weather index (FWI) and estimate the potential fire-induced emissions on a global scale that could be induced by climate change. To this end, 28 ensembles of idealized CO2 reduction simulations with the CESM climate model were analyzed. The results show that when CO2 in the atmosphere is doubled (2xCO2) from 367 ppm by 1 % per year, the additional emission due to increased fire weather could reach about 1.7 PgC/year, which corresponds to 82% of the current BB emission. Moreover, even if the atmospheric CO2 concentration further peaks and is reduced back to 2xCO2, the lagged response of the climate system can cause fire-prone weather and its resulting C emissions to remain higher than its previous state in many countries. These results highlight that more focus is required on the climate-fire-carbon feedback not only for more accurate future predictions but also for achieving net zero emissions in each country through a proper wildfire management strategy.

How to cite: Kim, J.-S., Kim, H.-J., and An, S.-I.: Hysteresis of fire-prone weather to CO2 forcing, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6286, https://doi.org/10.5194/egusphere-egu23-6286, 2023.

A.195
|
EGU23-6777
|
ECS
Emilie Launay, Virginie Hergault, Marc Bocquet, Joffrey Dumont Le Brazidec, and Yelva Roustan

Large-scale fires such as warehouse fires that have occurred in recent years or dramatic accidents like the Paris Notre-Dame Cathedral fire in 2019 have stressed the need to develop means of assessing the toxicity risks to the population and the environment of smoke plumes. A key challenge is to quickly provide the authorities with information on the areas impacted by the plume and the pollutant concentration levels to which the population is likely to be or to have been exposed. The Laboratoire Central de la Préfecture de Police (LCPP) aims to deploy a number of devices for measuring pollutants and tracers of smoke combustion during a fire. Subsequently, the application of an atmospheric dispersion model within the framework of a data assimilation approach should provide a source characterisation and a finer estimate of the concentration levels at points of interest.

To characterise the source, noticeably the released mass of pollutants and the emission height linked to a plume rise, an inverse problem method has been implemented. It is based on a Bayesian Markov Chain Monte Carlo (MCMC) technique meant to quantify the uncertainties associated with the emission estimation. Since the emission height strongly influences the atmospheric dispersion in the vicinity of the source, two approaches are used to estimate it. The first one consists in finding the emission time rate for each considered height and the second one consists in focussing on a single emission height and its associated emission time rate using a discrete distribution to describe the vertical profile. We use the Lagrangian Parallel Micro Swift Spray (PMSS) model developed by AriaTechnologies fed with meteorological fields provided by Météo-France to represent the atmospheric dispersion of smoke.

Our inverse method is applied to a large warehouse fire that occurred in Aubervilliers near Paris in 2021 using real observations. Abnormal concentrations of particulate matter were recorded, with a peak at 160 µg.m-3, located in the centre of Paris about 6 km from the source. They were collected by the LCPP and AirParif, the local air quality agency, and are used to retrieve the emission with a quantification of uncertainties and a sensitivity analysis of model error. The resulting emission height of the source, mainly between 200 and 300 m, coincides with the terrain observation for an emission rate of less than 1000 kg/h throughout the duration of the fire. A sensitivity analysis to the initial approximation of the source (the prior) shows its importance. It suggests to improve our method by incorporating the statistical parameters of the observation error into the MCMC method.

How to cite: Launay, E., Hergault, V., Bocquet, M., Dumont Le Brazidec, J., and Roustan, Y.: Characterisation of large-scale urban fire emissions by inverse modelling, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6777, https://doi.org/10.5194/egusphere-egu23-6777, 2023.

A.196
|
EGU23-6797
|
ECS
Antoine Ehret, Solène Turquety, Maya George, and Cathy Clerbaux

Wildfires are responsible for significant emissions of greenhouse gases, pollutants and aerosols. In addition to being a large source of carbon monoxide (CO) and carbon dioxide (CO2), they alone account for more than half of black carbon emissions and the majority of primary organic aerosol emissions.

Despite proactive fire suppression policies in the Northern Hemisphere (NH), allowing a decrease in fires, especially in Europe, an increase in the number of extreme fires can be noted in recent years. In the NH, this increase is mainly in Western America and boreal regions. The pollution plumes produced during extreme fires can be transported over thousands of kilometers, impacting background pollutant levels on a hemispheric scale. Thus, variability in fire intensity may explain a large part of the spatial and temporal variability of many atmospheric pollutants. For longer lived pollutants, wildfires may significantly increase background levels.

In this study, the link between extreme fire weather (high temperature), large fires and background pollution in the Northern Hemisphere is analyzed based on satellite observations. The impact of large wildfires on background levels of CO and aerosols above Europe is studied more specifically. We present the variability of fire frequency in the NH, their intensity and the related emissions using 20 years (2003-2022) of MODIS fire observations analyzed with the APIFLAME model. The link between large events and fire weather is studied using the ERA5 reanalyses and the Canadian Fire Weather Index (FWI). The related impact on the variability of total CO and AOD in the NH is analyzed using 15 years (2008-2022) of satellite observations from IASI/Metop and MODIS/Terra and Aqua, respectively. Finally, plume retro trajectories are computed in order to assess the contribution of the different geographical areas of the NH on the CO and AOD variability.

How to cite: Ehret, A., Turquety, S., George, M., and Clerbaux, C.: Variability of CO and aerosols plumes from wildfires in the Northern Hemisphere in 2008-2022 using satellite observations., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6797, https://doi.org/10.5194/egusphere-egu23-6797, 2023.

A.197
|
EGU23-7853
Klara Finkele, Padraig Flattery, Ciaran Nugent, and Paul Downes

Since 2006 the Canadian Forest Fire Weather Index System (FWI) has been employed operationally at Met Éireann to predict the risk of forest fires in Ireland (Walsh, S, 2006). Around 11% or 770,000 ha of the total land area of Ireland is afforested, but there are also large areas of open mountain and peatlands covered in grasses, dwarf-shrub and larger woody shrub type vegetation which can provide fuel for spring wildfires under suitable conditions. Following winter, vegetation can be dead or have a very low live moisture content, and the flammability of this vegetation can be readily influenced by prevailing weather, especially following prolonged dry periods.

The Department of Agriculture, Food and Marine is the Forest Protection authority in Ireland responsible for issuing Fire Danger Notices. These notices improve preparedness for fire responses and are based on information provided by Met Éireann who calculate the FWI and FWI components using observation data at synoptic stations, and the predicted FWI for the next five days ahead based on numerical weather prediction data.

The FWI is determined based on the types of forest fuel and how quickly they dry out/get rewetted, and components of fire behaviour. The FWI represents the fire intensity as the rate of energy per unit length of fire front (kW/m). The components which provide the most accurate indication of risk under Irish conditions are the Fine Fuel Moisture Code and Initial Spread Index, based on the fuels involved and ignition patterns observed to date. Since 2022 Met Eireann provide the FWI as well as the individual components Fine Fuel Moisture Content and Initial Spread Index via the public website for synoptic stations. These indices are based on observations and a seven-day forecast into the future using ECMWF predictions. This allows all county councils responsible for wildfire preparedness to access this information swiftly and directly.

Met Éireann also use the ANYWHERE multi-hazard warning tool which allows for visualisation of multiple fire-related risk factors and warning indices to be viewed simultaneously. The ANYWHERE system, in combination with our station-based forecast and antecedent conditions, provide fire managers and response teams with excellent information with which to make decisions. 

How to cite: Finkele, K., Flattery, P., Nugent, C., and Downes, P.: Current Operational Implementation of the Canadian Forest Fire Weather Index System in the Republic of Ireland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7853, https://doi.org/10.5194/egusphere-egu23-7853, 2023.

A.198
|
EGU23-7913
|
ECS
|
Linn G. Speidel, Lisa Bröder, Julie Lattaud, Negar Haghipour, Timothy I. Eglinton, and Alysha I. Coppola

Keywords: Black carbon, Dissolved organic carbon, BPCAs, Mackenzie River, Beaufort Sea, Climate change

Climate change is amplified in the arctic and boreal regions. This causes higher average temperatures and less precipitation in the summer months and is resulting in longer wildfire seasons, severity, frequency and extent. This increases the relies of carbon into the atmosphere as greenhouse gases and aerosols, amplifying climate change even further. Black carbon (BC) is a fraction of organic carbon, resulting from the incomplete combustion of biomass and fossil fuels. BC may be inaccessible for biodegradation, because of its highly condensed aromatic molecular structure and therefore stores carbon on long timescales on land and in the ocean. BC is produced on land, but is transported as dissolved BC (DBC) by the rivers to the oceans, where it cycles on millennial timescales, sequestering BC. Thus, it is important to understand the significance of BC in the context of increased fires in this vulnerable region in the face of climate change.

The Mackenzie River is a major source of terrestrial dissolved organic carbon (DOC) and the largest source of sediments to the Arctic Ocean. Here, we resolve the cycling of riverine DBC from the Mackenzie River to its fate in the Beaufort Sea, and the influence of mixing with Pacific water masses entering from the Chukchi Sea. We present DBC concentration data in ocean water, which was collected on two cruises in the Beaufort Sea in 2021 and 2022 covering the outflow of the Mackenzie River.

For DBC concentrations, we digested solid phase extracts of DOC with nitric acid to oxidize BC molecules into benzenepolycarboxylic acids (BPCAs), which were then quantified on High Performance Liquid Chromatography (HPLC). We compare the concentrations of the DBC and DOC to trace the mixing of DBC river outflow with the ocean water. Since DBC originates on land and is relatively stable to biodegradation we can resolve the pathways of DBC from the Mackenzie River to the Arctic Ocean.

 

 

How to cite: Speidel, L. G., Bröder, L., Lattaud, J., Haghipour, N., Eglinton, T. I., and Coppola, A. I.: Fate of Fire altered Organic Carbon in the arctic river-to-ocean continuum: Resolving Mackenzie River Black Carbon in the Beaufort Sea, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7913, https://doi.org/10.5194/egusphere-egu23-7913, 2023.

A.199
|
EGU23-8075
João Teixeira, Chantelle Burton, Douglas I. Kelley, Gerd Folberth, Fiona M. O'Connor, Richard Betts, and Apostolos Voulgarakis

Fire processes are a complex component of the Earth System processes and their full representation has proven to be difficult to represent Earth System Models (ESM). Because of this, these processes are often simplified in fire enabled ESMs, for instance ignitions are usually modelled to increase at low population densities up to a threshold, and reduce thereafter, as suppression effects become dominant with the increase of population density. However, socio-economic, and cultural factors can play a significant role in shaping the behaviour of fire ignitions. This study aims to address this by implementing a socio-economic factor in the fire ignition and suppression parametrisation in the INteractive Fire and Emission algoRithm for Natural envirOnments (INFERNO) based on the Human Development Index (HDI). The inclusion of this factor reduced a large long-standing positive bias found in regions of Temperate North America, Central America, Europe, and Southern Hemisphere South America. This change also leads to improvements in the model representation of fire weather and anthropogenic drivers in tropical regions, by reducing the influence of population density changes. Therefore, this framework can be used to improve understanding of the anthropogenic impacts of fire in future scenarios based on different Shared Socioeconomic Pathways.

How to cite: Teixeira, J., Burton, C., Kelley, D. I., Folberth, G., O'Connor, F. M., Betts, R., and Voulgarakis, A.: Impact of socio-economic factors in burnt area for future climate scenarios, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8075, https://doi.org/10.5194/egusphere-egu23-8075, 2023.

A.200
|
EGU23-9361
|
ECS
|
Victoria Flood, Kimberly Strong, Rebecca Buchholz, Sheryl Magzamen, and Grace Kuiper

Carbon monoxide (CO) is released during biomass burning events, resulting in decreased air quality and leading to the formation of climate forcing pollutants. An increase in wildfires has resulted in a change to the CO seasonal cycle of the North American Pacific Northwest, when comparing 2012-2018 to 2002-2011. This trend was reported using data from the Measurements of Pollution in the Troposphere (MOPITT) instrument on NASA’s Terra satellite. Similarly, an increase in summertime CO values was identified with the Fourier Transform Infrared (FTIR) spectrometer at the University of Toronto Atmospheric Observatory (TAO), over the same time period. Studies have shown correlations between wildfire smoke exposure and healthcare utilization for cardiovascular and respiratory conditions. Monthly counts of Emergency Department admissions for cardiovascular and respiratory diseases for Alberta and Ontario are investigated in relation to wildfire events in Canada and the USA. MOPITT and TAO FTIR CO columns, the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product, and provincial burned areas from Natural Resources Canada are assessed to estimate wildfire smoke exposure in the study region. This work aims to evaluate if CO can be used as a complementary tracer for health impacts from wildfire smoke exposure. 

 

How to cite: Flood, V., Strong, K., Buchholz, R., Magzamen, S., and Kuiper, G.: Investigating Emergency Room Visits for Cardiorespiratory Diseases in Alberta and Ontario, Canada in Relation to Wildfires, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9361, https://doi.org/10.5194/egusphere-egu23-9361, 2023.

A.201
|
EGU23-10336
Hocheol Seo and Yeonjoo Kim

Fires in high latitudes are becoming more critical in terrestrial ecosystem modeling. With climate warming and dry weather condition, the fires have spread more, and widespread burning has severely damaged the ecosystem. As the fire dynamics cannot be described with the mass or energy balance equations, the fire models have been developed with different input variables, linked with different vegetation models, and widely coupled with the earth system models (ESMs) or land surface models (LSMs) with different complexities of parameterization. Here, we designed a new approach using hybrid deep learning [Long Short-Term Memory (LSTM) - Artificial Neural Network (ANN)] for predicting Alaskan natural fires and aimed to understand the impacts of fires with from the NCAR community land model 5 – biogeochemistry (CLM5-BGC). This study was conducted based on fire information provided by Alaska Interagency Coordination Center (AICC), which provides the data for each fire point, start date, end date, and total burned area from 2016-2020. As the fire duration was identified as the most important in predicting the burned area, we first trained the LSTM for predicting fire duration (i.e., fire ignition and fire persistence period) with ERA5 atmospheric forcings. Also, we trained ANN to predict the burned area with both ERA5 atmospheric forcings and fire duration. Then, we combined two models (LSTM and ANN) to simultaneously predict the fire days and burned area with climate and vegetation datasets. This hybrid model has the strength to capture large fires (>10000ha), comparing the burned area from CLM5-BGC (Correlation: 0.79). When this hybrid model is coupled with CLM5-BGC, we found that the carbon fluxes changed over Alaska. In particular, total net ecosystem exchange (NEE) increased by more than two times that of only CLM5-BGC, which could primarily affect terrestrial carbon exchanges.

Acknowledgement

This work was supported by the Korea Polar Research Institute (KOPRI, PE22900) funded by the Ministry of Oceans and Fisheries and the Basic Science Research Program through the National Research Foundation of Korea, which was funded by the Ministry of Science, ICT & Future Planning (grant no. 2020R1A2C2007670) and by the Ministry of Education (2022R1A6A3A13073233).

How to cite: Seo, H. and Kim, Y.: A hybrid deep learning framework for predicting point-level Alaskan fires, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10336, https://doi.org/10.5194/egusphere-egu23-10336, 2023.

A.202
|
EGU23-10651
|
ECS
|
Liza McDonough, Pauline Treble, Andy Baker, Andrea Borsato, Silvia Frisia, Micheline Campbell, Gurinder Nagra, Katie Coleborn, Michael Gagan, Jian-xin Zhao, and David Paterson

Stalagmites provide records of past changes in climate, vegetation, and surface events, which can be identified through variability in their chemical composition over time. This variability is the result of changes in surface environmental properties, which are reflected in the physical and chemical properties of the water that percolates into the cave, ultimately affecting the composition of the speleothem calcite. Wildfires have the potential to alter soil properties and soluble element concentrations. Consequently, stalagmite compositions have been shown to respond to increases in soil nutrients, trace metal concentrations, and changes in soil/karst bedrock hydraulic conductivity. It is, therefore, likely that stalagmites, and particularly those grown in shallow caves for which transmission of the surface signal is rapid, capture the environmental effects of wildfires in their chemical and physical properties.

We analysed a stalagmite from a shallow cave in a region known to be affected by wildfires in south-west Western Australia. Fire proxies were assessed using a multi-proxy approach. This includes water isotopes via stable-isotope ratio mass spectrometry and trace element analyses via synchrotron X-ray fluorescence microscopy and laser ablation inductively coupled plasma mass spectrometry. This approach shows that the timing of known fire events coincided with a multi-proxy response in stalagmite chemistry, including increased concentrations of phosphorus, copper, aluminium, lead, and zinc, which are interpreted to be derived from leaching of ash from burned vegetation above the cave. We also identified lower and less variable peaks in phosphorus concentrations during the pre-colonisation period, suggesting that Indigenous land management resulted in more frequent but low intensity burning. This contrasted with less frequent but more intense fires associated with post-colonisation land-management. A particularly large paleo-fire identified in 1897 appears to coincide with a peak in 𝛿18O, interpreted to have resulted from evaporation of sub-surface water during the heat of the fire. This large fire was preceded by a multi-decadal dry period identified by trace element proxies. The intensity of the 1897 fire was then exacerbated by the combination of a multi-decadal drought and a transition away from cultural burning practices by Indigenous Australians, which resulted in build-up of vegetation and dry combustible material on the forest floor.

This research is a world-first demonstration of fire events recorded in stalagmites and shows their potential to provide accurate records of both fire frequency intervals and changes in climate. Further records of past fire events from stalagmites will help to understand how past fire regimes have varied with climate, land-use change and colonisation, and will help to better guide land management practices in the future.

How to cite: McDonough, L., Treble, P., Baker, A., Borsato, A., Frisia, S., Campbell, M., Nagra, G., Coleborn, K., Gagan, M., Zhao, J., and Paterson, D.: An annually resolved stalagmite record of fire frequency for the last 250 years in south west Australia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10651, https://doi.org/10.5194/egusphere-egu23-10651, 2023.

A.203
|
EGU23-11016
|
ECS
|
Micheline Campbell, Liza McDonough, Pauline Treble, Andy Baker, Nevena Kosarac, Katie Coleborn, Peter Wynn, and Axel Schmitt

Environmental proxy archives such as tree rings, sediment cores, and ice cores are commonly used to investigate past fire regimes. Speleothems, naturally forming cave decorations mainly comprising of stalagmites, stalactites, and flowstones, have been extensively used as palaeoenvironmental archives as their physical attributes and chemical composition change with changed environment. Research has shown that cave drip water chemistry responds to fire events, and more recently, that speleothems can record past fire events due to physical and chemical processes which alter speleothem composition. These processes include changes to water stores due to evaporation, fracturing of the host rock, changed soil hydrophobicity, production of highly soluble lime, changes in soil CO2 production, destruction of vegetation and deposition of ash above the cave. These changes can result in shifts in δ18O and δ13C, altered concentrations of vegetation, soil and bedrock-derived elements, and incorporation of soluble ash derived elements (including phosphorus, aluminium, copper, zinc, and lead) in speleothems (McDonough et al., 2022; Campbell et al., 2022).

Changes in speleothem chemistry are typically determined using micro-analytical techniques (such as Synchrotron X-ray Fluorescence Microscopy and laser ablation inductively coupled plasma mass spectrometry) and isotope ratio mass spectrometry. These changes can be precisely and absolutely dated via uranium-series and carbon dating, and can often be resolved at high resolution via manual counting of seasonal fluctuations in organic matter and trace element concentration. This makes speleothems, particularly those grown in shallow caves in highly seasonal climates, ideal for identifying both short-lived events such as wildfires, and longer-term changes such as shifts in climate. This novel application of speleothems as archives for coupled climate and palaeofire proxies is still in its infancy but holds great potential.

Here, we present a review of this new sub-discipline. We cover its origins in cave dripwater monitoring, discuss site and sample selection, and describe the current analytical and statistical approaches used to extract fire information from speleothems. Such records will enable land managers to develop improved methods for managing fire regimes.

McDonough, L.K., Treble, P.C., Baker, A., Borsato, A., Frisia, S., Nagra, G., Coleborn, K., Gagan, M.K., Zhao, J., Paterson, D., 2022. Past fires and post-fire impacts reconstructed from a southwest Australian stalagmite. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2022.03.020
 
Campbell, M., McDonough, L., Treble, P., Baker, A., Kosarac, N., Coleborn, K., Wynn, P.M., Schmitt, A., 2022. Speleothems as Archives for Palaeofire Proxies [preprint], https://www.authorea.com/doi/full/10.1002/essoar.10511989.1
 

How to cite: Campbell, M., McDonough, L., Treble, P., Baker, A., Kosarac, N., Coleborn, K., Wynn, P., and Schmitt, A.: Speleothems as archives for palaeofire proxies, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11016, https://doi.org/10.5194/egusphere-egu23-11016, 2023.

A.204
|
EGU23-12114
|
ECS
Stubble Burning and Forest Fires:Effect on Child Height in India
(withdrawn)
Prachi Singh, Sagnik Dey, Sourangsu Chowdhury, and Kunal Bali
A.205
|
EGU23-12559
|
ECS
Eirini Boleti, Katie Blackford, Stelios Myriokefalitakis, and Apostolos Voulgarakis

In high-latitude regions, larger and more frequent fires have been occurring over recent years, a tendency that is expected to continue in the coming decades due to warmer temperatures and regionally decreased precipitation imposed by climate change (IPCC,2019). Boreal wildfires in general are a significant source of CO2 emissions, as well as other greenhouse gases and aerosols (Akagi et al. 2011; Van Der Werf et al. 2010), e.g. emissions from boreal forests between 1997 and 2016 accounted for 7.4% of the global emissions (van der Werf et al. 2017). The effects of boreal fires on future climate have not been investigated and are potentially of great importance since climate change is occurring more rapidly in those high-latitude areas. More flammable forests in addition to the large carbon-rich peatlands, will potentially lead to devastating consequences.

The overall goal of our project is to quantify the effects of high-latitude wildfire emissions on atmospheric composition as well as climate. For this purpose, simulations with the EC Earth Earth System Model (ESM) are being employed to characterize the past, present and future variability and changes of wildfires especially in high latitudes. In the results presented here, we demonstrate how the EC Earth model performs when forced with prescribed fire emissions (GFED4) and with a more detailed peat fire module developed by our team. The mean state, seasonality, and interannual variability of fire emissions and key atmospheric constituent abundances (black carbon, organic carbon, NOx, CO, ozone, amongst others) are validated in the model, using a range of observational datasets. This validation exercise is a key step before employing the EC-Earth model for quantifying future impacts of high-latitude fires on atmospheric composition and climate.

 

IPCC,2019: Jia, G., E. Shevliakova, P. Artaxo, N. De Noblet-Ducoudré, R. Houghton, J. House, K. Kitajima, C. Lennard, A. Popp, A. Sirin, R. Sukumar, L. Verchot, 2019: Land–climate interactions. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M, Belkacemi, J. Malley, (eds.)]. In press.

Akagi, S.K. et al., 2011: Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys., 11, 4039–4072, doi:10.5194/acp-11-4039-2011.

Van Der Werf, G.R. et al., 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10, 11707–11735, doi:10.5194/acp-10-11707-2010.

Van Der Werf, G.R. et al., 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10, 11707–11735, doi:10.5194/acp-10-11707-2010.

How to cite: Boleti, E., Blackford, K., Myriokefalitakis, S., and Voulgarakis, A.: High-latitude wildfires, atmospheric composition, and climate, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12559, https://doi.org/10.5194/egusphere-egu23-12559, 2023.

A.206
|
EGU23-12731
|
ECS
|
Martín Senande-Rivera, Damián Insua-Costa, and Gonzalo Míguez-Macho

Due to its strong connection with meteorological conditions and vegetation structure, fire activity is affected by anthropogenic climate change. As a direct effect, climate regulates fuel moisture, so warmer and drier conditions are linked to higher fuel flammability, increasing fire risk. We use data from ERA5 and different CMIP6 models to build a database of fuel moisture (for both live and dead fuels) under real conditions (factual) and modified conditions without the influence of global warming (counterfactual). We then calculate the rate of spread of some observed wildfires in the Iberian Peninsula from 2001 to 2021, from both factual and counterfactual data. We find that climate change influence is already noticeable and significant. We also identify the areas most vulnerable to the impacts of climate change and the time of the year when these impacts are strongest. 

How to cite: Senande-Rivera, M., Insua-Costa, D., and Míguez-Macho, G.: Quantifying the direct influence of climate change on the rate of spread of wildfires in the Iberian Peninsula, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12731, https://doi.org/10.5194/egusphere-egu23-12731, 2023.

A.207
|
EGU23-13544
|
ECS
Tom Eames, Jeremy Russell-smith, Cameron Yates, Roland Vernooij, and Guido van der Werf

Tropical savannas and grasslands are the most frequently burned biome in the world, and fire constitutes an important part of the ecosystem. In this ecosystem it can have both rejuvenating and destructive effects, depending on several factors including fuel conditions, weather conditions, and time of year. For centuries humanity has used fire in these landscapes for hunting, land clearance, agriculture, and most recently carbon offsetting. Land managers in locations with a monsoonal climate and frequent fire regimes such as tropical savannas use prescribed burning as a management tool in the ‘early dry season’ (EDS) shortly after the last rains of the year. Fires at this time tend to be cooler, restricted to surface level and less severe, meaning they can be controlled more easily and tend to go out at night without external input. Commonly a specific, fixed date is used to indicate when this window of safe burning has expired, set based on experience of the local or regional authority. In this work, we have defined a method of determining when this window expires on the basis of active fire hotspot data from the twin MODIS instruments from 2001 through to 2021. By using the relationship between day and night-time active fire detections, we set a flexible date for the transition between the early and late dry seasons in fire-prone savannas globally in the five major tropical savanna regions - Northern & Southern hemisphere South America (NHSA & SHSA), Northern & Southern hemisphere Africa (NHAF & SHAF), and Australia (AUST). The variability across each region was high (lowest mean standard deviation annually was 24 days in NHAF and highest was 56 in AUST). The fraction of area burned in the late dry season ranged from 15% (SHSA) to as high as 85% (AUST) on average, with many parts of Africa and Australia especially showing a significant skew towards the late dry season. This suggests potential for implementation of prescribed burning programmes to increase the amount of desirable fire in the global savanna ecosystems.

How to cite: Eames, T., Russell-smith, J., Yates, C., Vernooij, R., and van der Werf, G.: Seasonal skew of tropical savanna fires, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13544, https://doi.org/10.5194/egusphere-egu23-13544, 2023.

A.208
|
EGU23-14211
|
ECS
Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Radovan Krejci, Paul Zieger, and Claudia Mohr

Biomass burning releases numerous aerosol particles into the air, influencing the radiative budget by scattering or absorbing solar radiation and by influencing cloud properties through acting as cloud condensation nuclei. These aerosol particles contain black and organic carbon and can be transported over large distances, reaching also pristine environments such as the Arctic. Due to the rising global temperature the fire activity has increased, and record-breaking black carbon concentrations have been observed in the Arctic (Stohl et al., 2007). Biomass burning events reaching the Arctic have been observed to increase the aerosol number concentration by about one to two orders of magnitude (Lathem et al., 2013). Although a lot of attention has been drawn to the physical characteristics of fire plumes, changes in chemical composition, specifically in the Arctic, are studied to a lesser extent. In this study we report molecular-level information on the chemical characteristics of biomass burning aerosol particles measured during different plumes reaching the island of Svalbard during 2020. These measurements were part of the year-long NASCENT (Ny-Ålesund aerosol cloud experiment; Pasquier et al., 2022) campaign, and were conducted using a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight mass spectrometer (FIGAERO-CIMS) using iodide as reagent ion. We use the particle-phase levoglucosan, a well-known tracer for biomass burning released from cellulose combustion, obtained from the FIGAERO-CIMS to identify biomass burning events, and will discuss the chemical characteristics of the properties of the events compared to non-events and implications for aerosol radiative and hygroscopic properties. In addition to a better understanding of the chemical composition of aged fire plumes reaching the Arctic, our study will also give insights on the time scales on which the background Arctic air can be disturbed by fire activity. 

References:
Stohl et al., Atmospheric Chem. Phys., 7, 511–534, 2007
Lathem et al., Atmospheric Chem. Phys., 13, 2735–2756, 2013
Pasquier et al., Bull. Am. Meteorol. Soc., 103, E2533–E2558, 2022

How to cite: Gramlich, Y., Siegel, K., Haslett, S. L., Krejci, R., Zieger, P., and Mohr, C.: Impact of biomass burning on the chemical composition of Arctic aerosols using mass spectrometry, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14211, https://doi.org/10.5194/egusphere-egu23-14211, 2023.

A.209
|
EGU23-15549
|
ECS
Nicolò Ardenghi, Gifford H Miller, Áslaug Geirsdóttir, David J Harning, Jonathan H Raberg, Thor Thordarson, and Julio Sepúlveda

We present the first continuous Holocene fire record of Iceland from a lacustrine archive in the northeast region. We use pyrogenic PAHs (polycyclic aromatic hydrocarbons) to trace shifts in fire regimes, paired to a continuous record of n-alkanes, faecal sterols, perylene, biogenic silica, and 13C, as proxies for soil erosion, lake productivity, and human presence.

Paleoclimate research across Iceland provides a template for changes in climate across the northern North Atlantic. The role of orbitally driven cooling, volcanism, and human impact as triggers of local environmental changes, such as fire and soil erosion, is debated. While there are indications that human impact could have reduced environmental resilience in a context of deteriorating climatic conditions, it is still difficult to resolve to what extent human and natural factors affected Iceland landscape instability, due also to a lack of data on natural fire regime prior and during human colonisation.

Pyrogenic PAHs can be formed during the incomplete combustion of biomass initiated by humans or natural wildfires. Factors such as fire temperature, biomass typology, and source distance can strongly affect pyrogenic PAH molecular weight and spatial distribution.
Faecal sterols/stanols and their ratios have been used in archaeological and paleoclimate studies to detect human and/or livestock/herbivore waste. The absence of large herbivorous mammals and humans in Iceland prior to settlement means that increases in the occurrence of faecal sterols and bile acids over natural background values should mark the arrival of humans and associated livestock in the catchment, which could be traced regionally.

Our results indicate that the Icelandic fire regime during the Holocene followed four main phases. Among these, a very long period centred around the Holocene climatic optimum (ca 9.5 – 4.5 ka BP) was characterised by a generally low frequency fire regime, both in the lake catchment as in the whole north-eastern Iceland. This same period was also marked by relatively low background levels of faecal sterols/stanols. At 4.5 ka BP a new phase started, with a general increase of all PAHs values. According to both our PAH and sterol data, there is no apparent human signal around the 9th century C.E., where an increase in man-made fires would likely be expected in connection to the historical data of Viking colonisation of Iceland (870s C.E.), suggesting that fire regimes have primarily been controlled by natural factors.
In addition, the pyrogenic PAHs record also differs from the trend of a general stepwise climatic “deterioration” previously highlighted by other lake proxies throughout Iceland, linked to decreasing summer insolation and related cooling, as highlighted also by our other proxies.

A comparison to recent palynological data from a nearby site and to δD data from the NW region suggest shifts in NAO regimes as the main forcing behind shifting fire regimes in Iceland. Changes in precipitation regimes would have determined shifts in the composition of the regional vegetational community, increasing fuel availability and flammability with decreasing precipitation, leading to widespread low temperature fires, easily trigged by frequent volcanic episodes.

How to cite: Ardenghi, N., Miller, G. H., Geirsdóttir, Á., Harning, D. J., Raberg, J. H., Thordarson, T., and Sepúlveda, J.: Regional precipitation variability modulates Holocene fire history of Iceland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15549, https://doi.org/10.5194/egusphere-egu23-15549, 2023.

A.210
|
EGU23-1412
Xiaozhen Xiong, Xu Liu, Wan Wu, Liqiao Lei, Qiguang Yang, Daniel Zhou, and Allen Laura

Australia’s unprecedented fire disasters at the end of 2019 to early 2020 emitted huge amounts of carbon monoxide (CO) and fire aerosol particles to the atmosphere, particularly during the Pyrocumulonimbus (pyroCb) outbreak that occurred in southeast Australia between 29 December 2019 and 4 January 2020. It was estimated that at least 18 pyroCbs were generated during this episode, and some of them injected ice, smoke, and biomass burning gases above the local tropopause.  An unprecedented abundance of H2O and CO in the stratosphere, and the displacement of background ozone (O3) and N2O from rapid ascent of air from the troposphere and lower stratosphere were found from satellite observations. Some other studies also found that the fire emissions and their long-range transport resulted in stratospheric aerosol, temperature, and O3 anomalies after the 2020 Australian bushfires and altered the Antarctic ozone and vortex, posing great impact to local air qality and climate change.

            This study will focus on the thermodynamic state of atmosphere associated with these pyroCbs, and its impact on the change of the cloud properties and trace gases during this unprecedented Australia fires, mainly based on a new single Field of View (SFOV) Sounder Atmospheric Products (SiFSAP) and TROPOMI. SiFSAP was developed by NASA using the Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) onboard SNPP and JPSS-1, and will soon be available to the public at NASA DAAC. Since this product has a spatial resolution of 15 km at nadir, which is better than most global weather and climate models and other current operational sounding products, a process-oriented analysis of the dynamic transport of CO and fire plumes during this unprecedented fire disasters will be made in this study.  Based on a Principal Component Radiative Transfer Model (PCRTM) and an optimized estimation retrieval algorithm, a simultaneously retrieval is made using the whole spectral information measured by CrIS,  and the derived SiFSAP include temperature, water vapor, trace gases (such as O3, CO2, CO, CH4 and N2O), cloud properties and surface properties. Use of ATMS together with CrIS allows SiFSAP to get accurate retrieval products under thick pyroCb conditions. An algorithm to detect pyroCb based on the hyperspectral infrared sounder spectrum from CrIS will be developed and verified. In addition to SiFSAP sounding products,  CO, O3, NO2 from TROPOMI and O3 from OMPS will be used. The wind fields from the NASA’s Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) and ERA5 will be used to characterize the transport, and the SiFSAP temperature and water vapor profiles within and around pyroCbs will be compared with MERRA-2 and ERA5 products.     

How to cite: Xiong, X., Liu, X., Wu, W., Lei, L., Yang, Q., Zhou, D., and Laura, A.: PyroCbs from Australia Fires and its Impact Study Using Satellite Observations from CrIS and TROPOMI and Reanalysis Data, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1412, https://doi.org/10.5194/egusphere-egu23-1412, 2023.

A.211
|
EGU23-16152
Patricia Oliva and César Quishpe

The Northwest of the Iberian Peninsula is one of the European regions with the highest frequency of forest fires. However, in the last decade fires in this region have burned larger areas and later in the fire season. Assessing the damage caused by fire and the pollutants released in the burning process is important to understand the effects on ecosystems and the carbon cycle, the recurrence of fires, and the effect on human health. In this work, we performed the estimation of emissions released in Galicia (Northwest Spain) in the last six years combining existing ESA CCI products. To quantify the area burned, we used the products from the Burned Area Algorithm developed within the Fire Climate Change Initiative (FireCCI) project. Then, the characterization and quantification of the total biomass were obtained from the Biomass CCI project at 100 m resolution by extracting the mean biomass by vegetation type from CORINE Land cover 2018. The burning efficiency factor was fitted using burn severity estimates from the dNBR calculation on the Sentinel-2 data. The emissions factors were selected from the literature. Our results show that during the last few years, there is a positive trend of annual emissions in Galicia. The sporadic maximums were registered in the years 2017 and 2022 when the climatic conditions aggravated the fire behaviour. In addition, Galicia is the region of Spain that registers the highest average estimates of emissions from fires since a high percentage of the affected area is occupied by pine and eucalyptus forests. These emissions contribute to a drastic decrease in air quality influencing the climate and affecting public health. Finally, we verified that adapting the burning efficiency factors to the specific conditions of the affected ecosystem generates more precise emission estimates.

How to cite: Oliva, P. and Quishpe, C.: Temporal analysis of wildfire emissions in the Northwest of Spain using ESA CCI data, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16152, https://doi.org/10.5194/egusphere-egu23-16152, 2023.

A.212
|
EGU23-16912
|
ECS
Jonathan Smolen, Isabel Montañez, and Michael Hren

Polycyclic aromatic hydrocarbons (PAHs) are molecules produced during incomplete combustion of organic matter and have been increasingly utilized as paleo-proxies for wildfires. More recently, their incorporation from drip water into speleothems has been utilized in conjunction with the stable isotopic and trace elemental measurements of host carbonate and fluid inclusions in order to assess a coupled record of fire and hydroclimate. Numerous studies have focused on cave systems in the Southwestern U.S., which has experienced highly variable hydroclimate and massive wildfires with past climate changes. Here, we present a PAH record covering ~19-11.5 ka obtained from a precisely dated and well-studied ML-1 stalagmite obtained from McLean’s Cave in the central Sierran foothills, CA. Total concentrations of four-ring PAHs reach maximum values from ~16.8-15 ka, associated with the first stage (1a) of Heinrich Stadial 1 (HS1) interval – this is interpreted as increased levels of soil PAHs produced from regional wildfires. Covariance of isomeric diagnostic ratios with total concentration indicates a shift in the nature of the associated fires, separating effects of PAH mobility in altered soils as well as shifts in soil water transport, stalagmite growth rates, and precipitation amounts. Paired climate signals from independent regional proxies are discussed, as well as factors affecting the interpretation of PAH signals in speleothems. Considerations and methods using small (~1g) speleothem samples are presented, with a focus on simultaneous extraction of useful paleoenvironmental information from other molecular biomarkers entombed within speleothems.

How to cite: Smolen, J., Montañez, I., and Hren, M.: Fire, Work with Me: A PAH record from a Southwestern US speleothem, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16912, https://doi.org/10.5194/egusphere-egu23-16912, 2023.

Posters virtual: Tue, 25 Apr, 14:00–15:45 | vHall BG

vBG.1
|
EGU23-3632
|
ECS
Jing Lyu, Andrew Zimmerman, Mark Bush, and Crystal McMichael

Fire alters the biogeochemical cycling of important elements, plays a role in climate change, and shapes the composition of global biological communities. Detection of past fires has long been used to reconstruct human settlement and climate records. Charcoal and phytolith abundance has been the most commonly used paleofire proxies but may only represent evidence of local fires. Chemical analyses of pyrogenic carbon (PyC) have been more recently used, but are also not without controversy. Thus far, very few intercomparisons of these proxies have been conducted. Here, the fire records contained in soil and lake sediments of Western Amazon (at lakes Ayauchi, Parker, Gentry, and surrounding regions) were determined by charcoal microscopy, chemical thermal oxidation (CTO), and benzene polycarboxylic acids (BPCA) molecular biomarkers. Charcoal represented a smaller portion of PyC and, with its patchy distribution, likely indicated local or larger regional fire events. With a median value of about 15% of organic carbon, PyC via CTO oxidation was of the highest concentrations, which suggests a larger PyC detection window and lower sensitivity of reflecting regional fire. With a median value of about 3% of organic carbon, the BPCA-derived PyC distributions bore the closest resemblance to both spatial and temporal regional fire variations, established via archeological, pollen and phytolith records, thus may be a more sensitive indicator of fire over larger regional scales. Molecular ratios of BPCA molecules in Lake Ayauchi soils indicated higher temperature fires (> 600°C) and suggested a history of more human occupation and human-caused fire in the Lake Ayauchi region compared with the Lake Gentry & Parker region. However, our findings suggest that the use of a combination of fire proxy methods provides a fuller picture of the fire history of a region than any single approach. Establishing a better understanding the differences in the information provided by various paleofire proxies will allow a more complete understanding of the drivers, history and ecological and biogeochemical effects of fire, both regionally and globally.

How to cite: Lyu, J., Zimmerman, A., Bush, M., and McMichael, C.: BPCA-derived PyC may reflect fire signals over regional scales from the western Amazon Basin fire record, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3632, https://doi.org/10.5194/egusphere-egu23-3632, 2023.

vBG.2
|
EGU23-16241
|
ECS
|
Rodrigo San Martin, Catherine Ottle, and Anna Sörensson

Wildfires play an essential role in the biogeophysical cycles of different world ecosystems, from dry savannas to humid wetlands. During the last decades, fire regimes of several global regions began to present significant alterations due to climate change and human land-use pressure. The South American Gran Chaco ecoregion contains one of the most important reservoirs of native forests and biodiversity in the world, including the largest continuous dry tropical forest and some of the most extensive wetlands. The area presents a marked precipitation gradient from the East (wet) to the West (dry), which is manifested in vegetation (from wetlands to dry forests and shrublands). In this work, we mapped natural vegetation with the European Space Agency (ESA) Climate Change Initiative (CCI) medium-resolution land cover maps (MRLC v2.0.7; annual - 300m) and fires with the ESA CCI Fire product (FireCCI51; monthly - 250m) in the Gran Chaco between 2001 and 2019 to establish the past and current effects and dynamics of fires in the area (which are primarily human ignited). To assess the region’s climatology, we used the ERA5 bias-corrected reanalysis dataset (WFDE5; daily - 0.5º). Our results highlight the distinct dynamics of fires in the wet and dry areas of the Gran Chaco, showing two fire seasons - summer and winter - in the wet areas (where grasses predominate) and one fire season - winter - in the dry areas (where shrubs and trees are more abundant). Examining the correlations between annual rain anomalies and burnt area, we find that precipitation anomalies have different effects in dry and wet areas throughout the region’s precipitation gradient. Correlations change from positive in the drier areas to negative in the wetter areas. These results may reflect that summer and winter fires do not have the same drivers and the key role of the available biomass limiting the fire expansion. Since biomass is more dependent on precipitation in dry areas compared to wetter ones, the correlation of winter fires with precipitation is positive in the drier regions. The negative correlations obtained in the summer season could be explained by the fact that summer fires essentially occurred in the wetter part of the Chaco and are intended (through human ignition) to increase the grasslands’ productivity; this practice could be more frequent during negative precipitation anomalies compared to positive ones. Further analysis will try to confirm these findings with biomass satellite data.   

How to cite: San Martin, R., Ottle, C., and Sörensson, A.: Characterizing the fire regime evolution and land-use change in the Dry and Wet Chaco between 2001 and 2019, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16241, https://doi.org/10.5194/egusphere-egu23-16241, 2023.