EGU23-3775
https://doi.org/10.5194/egusphere-egu23-3775
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Aerosol-induced radiation effect and the potential influence of stringent emission control on terrestrial carbon uptake in China

Lingfeng Li, Bo Qiu, Xin Huang, Weidong Guo, Xin Miao, Jiuyi Chen, Yueyang Ni, and Xiaohui Tian
Lingfeng Li et al.
  • School of Atmospheric Sciences, Nanjing University, Nanjing, China

Atmospheric aerosols can scatter and absorb the incident solar radiation, and thus impact the land carbon cycle by perturbating the radiation required for photosynthesis. Atmospheric aerosols inhibit the carbon uptake by terrestrial ecosystems through reducing the total amount of incident radiation, while the increased proportion of diffuse irradiance is known to promote photosynthesis. In the past few decades, with the rapid industrialization and urbanization, China has suffered from frequent haze pollution episodes, which have brought up severe environmental problems and ecological impacts. Here, we use a regional climate model, WRF-Chem, along with the offline driven Simplified Simple Biosphere Model (SSiB4) to investigate the impact of aerosol radiation effects on land biosphere carbon uptake capacity. The results show that the current aerosol loading has led to significant decrease in the incident solar radiation in China, which severely suppresses the gross primary production (GPP) and net primary production (NPP). Then, we assessed the influences of stringent emission and pollution control policies on terrestrial ecosystem carbon fluxes. By comparing the simulation results based on China’s ambitious carbon neutrality policies with the reference scenario with negligible emission control, we found that the carbon neutrality scenario with rigorous pollution control increases the incident solar radiation and thereby enhancing the carbon uptake of land biosphere. Under the current state of aerosol loading, the decrease of total amount of incident radiation dominates the suppression of terrestrial carbon uptake, while aerosol diffuse fertilization effect can only partly offset the inhibition of decreased solar radiation on plant photosynthesis. Our findings improve the understanding of the interactions between aerosol pollution and the land carbon cycle, and suggest an appreciable ecological benefit and a potential terrestrial carbon sink enhancement of stringent emission and pollution control actions.

How to cite: Li, L., Qiu, B., Huang, X., Guo, W., Miao, X., Chen, J., Ni, Y., and Tian, X.: Aerosol-induced radiation effect and the potential influence of stringent emission control on terrestrial carbon uptake in China, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3775, https://doi.org/10.5194/egusphere-egu23-3775, 2023.