EGU23-6184, updated on 09 Jan 2024
https://doi.org/10.5194/egusphere-egu23-6184
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A global model for estimating fuel consumption and fire carbon emissions at 500-m spatial resolution

Dave van Wees1, Guido R. van der Werf1, James T. Randerson2, Brendan M. Rogers3, Yang Chen2, Sander Veraverbeke1, Louis Giglio4, and Douglas C. Morton5
Dave van Wees et al.
  • 1Department of Earth Sciences, Vrije Universiteit, Amsterdam, Netherlands (d.van.wees@vu.nl)
  • 2Department of Earth System Science, University of California, Irvine, USA
  • 3Woodwell Climate Research Center, Falmouth, USA
  • 4Department of Geographical Sciences, University of Maryland, College Park, USA
  • 5Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, USA

Fires constitute a key source of emissions of greenhouse gasses and aerosols. Fire emissions can be quantified using models, and these estimates are influenced by the spatial resolution of the model and its input data. Here we present a novel global model based on the Global Fire Emissions Database (GFED) modelling framework for the estimation of fuel consumption and fire carbon emissions at a spatial resolution of 500 m. The model was primarily based on observation-derived data products from MODIS, reanalysis data for meteorology, and an updated field measurement synthesis database for constraining fuel load and fuel consumption. Compared to coarser models, typically with a resolution of 0.25°, the 500-m spatial resolution allowed for increased spatially resolved emissions and a better representation of local-scale variability in fire types. The model includes a separate module for the calculation of emissions from fire-related forest loss, using 30-m Landsat-based forest loss data. We estimated annual carbon emissions of 2.1 Pg C yr-1, of which around 24% was from fire-related forest loss. Fuel consumption was on average a factor 10 higher in case of fire-related forest loss compared to fires without forest loss. Up to now, emission estimates from our new model are based on MODIS burned area with a 500-m resolution, leading to global emissions similar to GFED4s. However, novel high-resolution burned area datasets based on the Landsat and Sentinel-2 missions reveal substantially more global burned area. Our 500-m global fire model provides a suitable framework for converting these burned area products to emissions, with the prospect of substantially higher global emissions.

How to cite: van Wees, D., van der Werf, G. R., Randerson, J. T., Rogers, B. M., Chen, Y., Veraverbeke, S., Giglio, L., and Morton, D. C.: A global model for estimating fuel consumption and fire carbon emissions at 500-m spatial resolution, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6184, https://doi.org/10.5194/egusphere-egu23-6184, 2023.