EGU23-6686
https://doi.org/10.5194/egusphere-egu23-6686
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Emissions Inventory of Air Pollutants from Anthropogenic Sources in Jakarta 

Puji Lestari1, Maulana Khafid Arrohman1, Seny Damayanti1, and Zbigniew Klimont2
Puji Lestari et al.
  • 1Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Bandung, Indonesia (pujilest@indo.net.id)
  • 2International Institute for Applied Systems Analysis (IIASA) – Schlossplatz 1 – A-2361 Laxenburg, Austria

Emission inventory is an important tool for air quality management. Jakarta as a capital city of Indonesia has a very high air pollution as a result of urban activities from various anthropogenic sources. This study aims to conduct emission inventory and emission spatial distribution of NOX, CO, PM2.5, PM10, NMVOC, BC, and SO2 from anthropogenic sources in Jakarta from 2015 to 2030, using 2015 as a baseline year. The results from this study can be very important to improve the emission data for Jakarta and contribute to the global emission model. This result can also be used for air quality management and lesson learnt cases for other regions in South East Asian countries.   Emissions of these pollutants were calculated using GAINS (Greenhouse gas Air pollution INteractions and Synergies) model, considering implementation of emission standards for transport and stationary combustion sources as well as policies stimulating accelerated electrification of vehicle fleets and vehicle scrapping programs. The impact of current policies to emission reduction was also evaluated in this study. The total 2015 emissions of NOX, CO, PM2.5, PM10, NMVOC, BC and SO2 were estimated at around 53 kt, 144 kt, 4.6 kt, 6 kt, 48.6 kt, 1.2 kt, and 20 kt, respectively. The biggest contribution for NOx, CO, BC and NMVOC emissions originated from road transportation sector which contributed about 57%, 93% and 75%, 96% respectively, while for SO2, industrial combustion contributed about 67%. Heavy duty vehicles contribute the most NOx and BC emissions in the transport sector, while motorcycles emit the most CO. Meanwhile PM2.5 and PM10 in Jakarta are mostly emitted from road transportation and industrial combustion sectors, which contributed around 43%-46% for each sector. Heavy duty vehicles were still the highest contributor of PM2.5 emission in the transport sector. In addition to air pollutants, GHG (CO2 eq) emission was also calculated in this study and the results indicating that the main contributor in 2015 were road transport  and power & heating plant which contributed 34% and 32 % respectively.  Based on emission spatial distribution, the highest concentration of all pollutants was found in the central of Jakarta, where traffic activities are very busy. Policy implementation could effectively reduce pollution levels in Jakarta. The accelerated implementation of electric vehicles, stringent emission standards, and transport management measures like electronic road pricing could significantly contribute to the reduction of PM2.5, PM10 as well as BC.

Keywords: Emission inventory, pollutants, power plant, industry, residential and commercial, PM2.5, NOx, SO2, NMVOC, GAINS.

 

How to cite: Lestari, P., Arrohman, M. K., Damayanti, S., and Klimont, Z.: Emissions Inventory of Air Pollutants from Anthropogenic Sources in Jakarta , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-6686, https://doi.org/10.5194/egusphere-egu23-6686, 2023.