EGU23-6896, updated on 09 Jan 2024
https://doi.org/10.5194/egusphere-egu23-6896
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Synchronous Slow Slip Event and Seismic Swarm in Central Ecuadorian forearc, 2013

Alexander Wickham-Piotrowski1, Yvonne Font1, Marc Regnier1, Quentin Bletery1, Monica Segovia2, Jean-Mathieu Nocquet1, and Bertrand Delouis1
Alexander Wickham-Piotrowski et al.
  • 1Université Côte d’Azur, IRD, CNRS, Observatoire de la Côte d’Azur, Géoazur, France
  • 2Instituto Geofísico, Escuela Politécnica Nacional, Quito, Ecuador

In Ecuador, on some areas of the subduction interface, accumulated stress is released aseismically through slow slip events (SSE) synchronous to seismic swarms (S5). In the La Plata island region in the Central Ecuadorian forearc, recurrent and shallow S5 occur near a portion of the plate interface highly coupled by the subduction of a massive oceanic relief. This study shows a sequence of seismicity and SSE organization propitious to investigate the cause and effect relation-ship between both phenomena.

GPS data show that an SSE (Mw 6.3) initiated at the end of November 2012 and ruptured 2 shallow aseismic patches 25 km apart (~10 km along the vertical direction). The first patch (P1), located southeastward of the island on a moderately coupled portion of the plate interface at the leading edge of the subducting oceanic mount, has a rupture area of about 80 km2 and a maximum cumulated slip of 15 cm. Its slipping behavior is pulse-like for about a month and a half. Mid-January, the slip of the SSE suddenly accelerates. A day later, a second aseismic patch (P2), updip from P1, ruptured a highly coupled area of about 250 km2 with a maximum slip of 35 cm. This second rupture lasted 8 days and accounted for 80% of total aseismic moment. Both SSE patches stopped slipping by the end of January 2013.

The spatial-temporal distribution of 2,000 micro-earthquakes between November 2012 and February 2013 provides clues about the interface processes and highlights that faulting occurred on secondary faults during an S5. An outer rise seismic cluster with an ML 4.8 earthquake occurred on a bending fault of the Nazca Plate, 10 days before P1 started. The cluster is collinear with P1 with respect to the relative plate convergence direction, suggesting a possible causal relationship. Almost no seismicity affects the plate interface during the pulse-like development of P1 until mid-January. As the P1-SSE’s slip accelerates, an intense seismic swarm developed updip of P1 along a narrow NNE-SSW trending direction, organized in sub-vertically active structures within the subducting plate. The Coulomb stress variation computed from the cumulative slip of P1 as well as the velocity migration of the cluster (about 10 km/day) suggests that the intraplate swarm is triggered and developed at the P1-SSE’s rupture front. Synchronously to P2, seismicity developed at the Northern edge of the oceanic relief.

The seismicity swarm witnesses the reactivation of oceanic bending faults within the Nazca plate. We hypothesize that this reactivation is likely responsible of a fluid release on the plate interface, that contributed to overpressuring the highly coupled area near P2, priory saturated with fluids, which ruptures aseismically afterwards. 

How to cite: Wickham-Piotrowski, A., Font, Y., Regnier, M., Bletery, Q., Segovia, M., Nocquet, J.-M., and Delouis, B.: Synchronous Slow Slip Event and Seismic Swarm in Central Ecuadorian forearc, 2013, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6896, https://doi.org/10.5194/egusphere-egu23-6896, 2023.