EGU23-7876
https://doi.org/10.5194/egusphere-egu23-7876
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Apatite as a monitor for sulfur redox reactions during fluid-rock interaction in the subduction channel

Jesse Walters1,2, Horst Marschall1,2, Tobias Grützner-Handke1,2, Kevin Klimm1, Brian Konecke3, and Adam Simon4
Jesse Walters et al.
  • 1Goethe Universität, Institut für Geowissenschaften, Frankfurt am Main, Germany (walters@em.uni-frankfurt.de)
  • 2Frankfurt Isotope and Element Research CEnter (FIERCE), Goethe Universität, Frankfurt am Main, Germany
  • 3Fathom Geophysics, Bartlett, Illinois, USA
  • 4Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA

The oxidation state of sulfur in slab fluids is controversial, with both dominantly oxidized and reduced species proposed. Here we use in situ X-ray absorption spectroscopy analysis of sulfur-in-apatite to monitor changes in the oxidation state of sulfur during high-P metasomatism by slab fluids in the subduction channel. Our samples include a 73 cm continuous transect of reaction zones between a metagabbroic eclogite block and serpentinite matrix from a mélange zone on the island of Syros, Greece. The block core consists of garnet, omphacite, phengite, paragonite, epidote-clinozoisite, and rutile. In this region, apatite is only observed as elongate inclusions in omphacite cores. From the core outwards micas are increasingly replaced by epidote-clinozoisite, garnets are smaller and more frequent, pyrite + bornite is observed as inclusions in recrystallized omphacite, and apatite is increasingly abundant in the matrix and inclusions in garnet. A major transition at 48 cm separates an assemblage of Ca-Na amphibole, omphacite, chlorite, pyrite, and apatite from the inner garnet-bearing eclogite assemblages. Omphacite disappears from the assemblage at ~56 cm and amphibole compositions sharply transition to tremolite at 59 cm. Finally, the assemblage tremolite + talc + pyrite is observed after ~70 cm.

Apatites in the eclogite assemblages exclusively display S6+ peaks in their absorption spectra. This includes apatite inclusions in omphacite in the least altered lithology, as well as matrix apatite and isolated apatite inclusions in garnet in the outermost metasomatized eclogite zone. In the intermediate pyrite-rich (~1–5 vol %) amphibole + omphacite + chlorite zone, apatite displays a strong S1- absorption peak in most grains, with rare analyses showing mixed S1- and S6+. Finally, apatite in the outermost tremolite-bearing assemblages only displays a S6+ peak. The pyrite-rich zone at 48 cm occurs at the initial interface between the serpentinite matrix and eclogite block, characterized by a dramatic decrease in Na content and Mg#. Our data suggest that reduction of S6+ in infiltrating fluids to S1- in pyrite became focused as Fe diffused across the steep Mg# gradient, resulting in pyrite precipitation. In contrast, S reduction in the Mg-rich tremolite-dominant portions of the transect was limited by a lack of Fe, resulting in low modes of pyrite and fluid buffered S6+ in apatite. Finally, S6+-bearing apatite is also observed in reaction zone lithologies from elsewhere on Syros, suggesting our observations are not isolated.

Two important conclusions are drawn from these data and observations: (1) In the case of Syros, slab fluids at eclogite-facies conditions carried oxidized S6+, and (2) The interaction of these fluids with eclogites composed of ferrous-Fe silicates resulted in extensive sulfide precipitation.

How to cite: Walters, J., Marschall, H., Grützner-Handke, T., Klimm, K., Konecke, B., and Simon, A.: Apatite as a monitor for sulfur redox reactions during fluid-rock interaction in the subduction channel, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-7876, https://doi.org/10.5194/egusphere-egu23-7876, 2023.