GM11.4 | New perspectives in geoarchaeology. Human agency and landscape change – from the Late Quaternary to the Anthropocene
PICO
New perspectives in geoarchaeology. Human agency and landscape change – from the Late Quaternary to the Anthropocene
Co-organized by SSS3
Convener: Guido Stefano MarianiECSECS | Co-conveners: Jago Birk, Julia MeisterECSECS, Kathleen Nicoll, Hans von Suchodoletz
PICO
| Thu, 27 Apr, 08:30–10:15 (CEST)
 
PICO spot 2
Thu, 08:30
Human activity became a major player of global climatic and environmental change in the course of the Late Quaternary and became dominant during the Anthropocene. Consequently, it is crucial to understand these changes through the study of former human-environmental interactions at different spatial and temporal scales. Documenting the diversity of human responses and adaptations to climate, landscape and ecosystem change, natural disasters and varying natural resources availability in different regions of our planet, and vice versa, provides valuable opportunities to learn from the past. To do so, cross-disciplinary studies in geoarchaeology offer a chance to better understand archaeological records and landscapes in the context of human activity, and the hydroclimate-environment nexus, over time. This session seeks related interdisciplinary papers and specific geoarchaeological case-studies from both Earth Sciences and Archaeology/History that deploy various approaches and tools to address the reconstruction of former human-environmental interactions from the Palaeolithic through the modern period. Contributions may include (but are not limited to) insights about how people have coped with environmental disasters or abrupt changes in the past, how to define sustainability thresholds for farming or resource exploitation, or how to distinguish the baseline natural and human contributions to environmental changes. Ultimately, we would like to understand how strategies of human resilience and innovation can inform our modern policies for addressing the challenges of the emerging Anthropocene, a time frame dominated by human modulation of surface geomorphological processes and hydroclimatic conditions.

PICO: Thu, 27 Apr | PICO spot 2

08:30–08:35
08:35–08:37
|
PICO2.1
|
EGU23-7882
|
GM11.4
|
Highlight
|
On-site presentation
Anthropocene stratigraphy, and the urban sediments of Karlsplatz, Vienna
(withdrawn)
Michael Wagreich, Maria Meszar, Veronika Koukal, and Karin Hain
08:37–08:39
|
PICO2.2
|
EGU23-12871
|
GM11.4
|
On-site presentation
Michael Weissl, Diana Hatzenbühler, Christian Baumgartner, and Michael Wagreich

The project »From Romans to the Anthropocene, from Carnuntum to Vienna: An Urban Anthropocene Field Lab« (WWTF ESR20-027) focuses on the urban transformation from the Roman legionary camps of Carnuntum and Vindobona to Vienna's periurban areas. Combining historical and geoarchaeological methods, we investigate the diverging development of the two sites and their manifold relations over time.

The Danube river crosses the mountain ranges of the Wienerwald and Malé Karpaty, forming the eastern and western limits of the central Vienna Basin. For many centuries, the river was both a barrier and a transportation route. The floodplains and river terraces along the Danube served as concentration areas and battlegrounds during countless conflicts between central Europe and its enemies.

The legionary camps of Carnuntum and Vindobona were built during the first century AD at the rim of glacial river terraces, next to the shortest passages across the Danube. During late antiquity, the former provincial capital Carnuntum lost importance. However, Vindobona became first a local center and later the capital of the Austrian rulers. After a sudden Turkish siege in 1529, the fortifications of Vienna were strengthened and maintained until the middle of the 19th century.

Urban development of the region over the centuries was limited not only by permanent military threats. North of the Danube, agriculture was always restricted climatically by aridity and sand drift. Most settlements on the riverbanks of the Danube and its tributaries were affected frequently by floods and erosion. Many villages vanished completely as a consequence of such natural hazards. Since some decades, natural river dynamics have been restricted technically, and many areas under cultivation are now irrigated artificially. The analysis of the sedimentary record downstream of Vienna clearly shows the anthropogenic impact on sedimentation processes.

Contrary to Carnuntum, Vienna could evolve from a legionary camp step by step into a capital and a strong fortress. The demolition of the city walls after the middle of the 19th century, the following long period of peace, and, in particular, the consequent river engineering, were preconditions for the development into a modern metropolis.

How to cite: Weissl, M., Hatzenbühler, D., Baumgartner, C., and Wagreich, M.: From Romans to the Anthropocene: Geoarchaeological Investigations in the Central Vienna Basin (Austria), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12871, https://doi.org/10.5194/egusphere-egu23-12871, 2023.

08:39–08:41
|
PICO2.3
|
EGU23-16741
|
GM11.4
|
On-site presentation
Cécile Vittori, Guillaume Jouve, Gilles Brocard, Jean-Philippe Goiran, Quentin Vitale, Lionel Darras, Laurent Mattio, Alessandro Conforti, Christine Oberlin, Frank Preusser, Pierre Sabatier, Edwige Pons-Branchu, Camille Gonçalves, Brahimsamba Bomou, Anne-Lise Develle, Amber Goyon, Stoil Chapkanski, Kevin Jacq, and Maxime Debret

Technical improvements at the end of the Bronze Age led to the rise of a 1rst generation of major sea powers around the Mediterranean Sea, such as Etruria in modern Italy. The Etruscan coast was the fringed by a series of large lagoons. Only one survives today: the lagoon of Orbetello. The lagoon is preserved by two subparallel sand spits that connect former Argentario island to mainland Italy, as situation that today protects it from rapid infilling. A third sand spit, in the middle of the lagoon, hosts the Etruscan city of Orbetello. Today, three canals connect the lagoon to the sea. A massive phase of eutrophication driven by the ingress of fertilizers has plagued the lagoon in late 20th Century. Eutrophication at times has spurred fish and bird kills, and the release of mercury in the water column. Major contingency plans have been implemented to fight off eutrophication, with various success. 

              However little is known of the lagoon management and the evolution of Orbetello before the 17th century CE. Nonetheless, the wealth of the city and the health of its lagoon have been tightly related during the past three millennia. To track this coevolution, a large team of researcher has been assembled to conduct an analysis of the lagoon sediments using XRF scanning of cored sediments, SMIR, Rock Eval, hyperspectral imaging of chromatic pigments, analysis of mercury and phosphorus content, ostracods and pollen assemblages, to document the links between sediment facies, eutrophication and salinity crises, as a result of successive phases of rise and demise of lagoon management over the past three millennia. Here, we focus on the sub-bottom imaging conducted in the very shallow (< 1.5m) waters of this extensive (30 km2) lagoon. The Exail Echoes 10 000 sub-bottom profiler reveals individual layers that can be traced across the lagoon, allowing stratigraphic correlations between cores, and highlighting the environmental significance of the sedimentary facies. Acoustic imaging using a 3.5 kHz Chirp systems from Exail (Haliotis R/V) was conducted offshore to document the architecture of the sand spits protecting the lagoon. The architecture of the deposits, 14C, OSL, and U-Th dating reveal that the lagoon results from the drowning of strandplains that started forming on both side of the older, central sand spit, at the end of the postglacial transgression. Drowning accompanied the final rise in sea level over the past 6.5 ka, forming two lagoons on both sides of the central spit. These initial lagoons eventually coalesced after drowning the central sand spit. Continuation of the lagoon level rise since Antiquity led to the flooding of Bronze Age, Etruscan and Roman settlements. Sub-bottom imaging in the lagoon reveals buried structures possibly used for navigation and salinity control. Sedimentation is marked by an alternation of black, shelly organic silty clays and decimeter-thick layers of broken shells. Radiocarbon dating indicates that the cores capture up to five millennia of sedimentation, with a sharp decrease in sedimentation rates four millennia ago.

How to cite: Vittori, C., Jouve, G., Brocard, G., Goiran, J.-P., Vitale, Q., Darras, L., Mattio, L., Conforti, A., Oberlin, C., Preusser, F., Sabatier, P., Pons-Branchu, E., Gonçalves, C., Bomou, B., Develle, A.-L., Goyon, A., Chapkanski, S., Jacq, K., and Debret, M.: O’Estrucan Ports, Where Are Thou ? Multiproxy sedimentological investigation of the Orbetello Lagoon, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16741, https://doi.org/10.5194/egusphere-egu23-16741, 2023.

08:41–08:43
|
PICO2.4
|
EGU23-12609
|
GM11.4
|
ECS
|
On-site presentation
Kristina Reetz, Jonas Kirch, Jago Jonathan Birk, Astrid Stobbe, and Sabine Fiedler

Human impact on the environment as derived from colluvial deposits – example from the La Tène Period until the Middle Ages in the Siegerland (Germany)

Reetz, K1., J. Kirch1, J.J. Birk1,2, A. Stobbe3 and S. Fiedler1

1 Johannes Gutenberg-University Mainz

2 recent adress Georg - August - University Göttingen

3 Goethe - University Frankfurt am Main

The Siegerland is one of the most cohesive mining regions in the Iron Age in Central Europe. While the number of settlement and smelting sites has been increasingly better researched over the last few years, it was basically unknown which impacts by the La Tène iron production on the primary forests have to be considered, and how are such correlated with other activities and soil erosion. Below a smelting site in the southwestern part of the Siegerland, we made a rare find of colluvial deposits in the valley of the Obersdorfbach. It tells about the human impact between the Earlier Iron Age and the heyday of iron production during the La Tène period and the Middle Ages. In addition to pollen and NPP analysis, we used element contents, and molecular markers (n-alkanes, steroids).

The small stream has cut in sections in meanders up to 180 cm deep into the relatively narrow floodplain. There, they lie on a gravel bed with embedded peat (Obersd 1, 170 – 153 cm, calibrated age 700/500 – 350 BC). In the uppermost 10 cm of the fen peat, the proportion of mineral components increases and pebbles are intercalated (Obersd 2, 153 – 145 cm, 350 – 200 BC).  On top are multi-textured sandy-clayey colluvial/floodplain loams with charcoal bands (Obersd 3, 145 – 125 cm, 200 BC – unknown). It is followed by a sandy colluvium from the Middle Ages (Obersd 4, 125 – 110 cm).

In the 7th to the middle of the 4th century BC the forests near Obersdorf consisted mainly of beech and linden trees. Nevertheless, non-arboreal pollen provides evidence of anthropogenic impact (Obersd 1). According to the mountain-archaeological picture, at first iron was produced only on a small scale and the interventions in the vegetation were still small. Although the area should have been sparsely populated at the time, fecal markers suggesting human presence can be found. However, human influence on the landscape increased significantly from about 350 cal. BC (zone Obersd 2). Pollen and n-alkanes show a distinct impact into the vegetation. Forest clearing led to erosion and the accumulation of thick colluvial deposits. Pollen from ruderal places increase significantly, cereals and coprophilous spores occur. The strong anthropogenic influence in zone Obersd. 2 can be correlated with the archaeologically known smelting site. In addition to wood for firing the furnaces, large quantities of clay were needed for their construction. During the transformation of the landscape, erosion increasingly occurred on the slopes. The result is clayey silt sediments with intercalated charcoal bands (Obersd 3). The following sandy colluvium (Obersd 4) from the early Middle Ages shows a dominance of beech, hornbeam, and rye. Steroids show the presence of humans and livestock here.

How to cite: Reetz, K., Kirch, J., Birk, J. J., Stobbe, A., and Fiedler, S.: Human impact on the environment as derived from colluvial deposits – example from the La Tène Period until the Middle Ages in the Siegerland (Germany), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12609, https://doi.org/10.5194/egusphere-egu23-12609, 2023.

08:43–08:45
|
PICO2.5
|
EGU23-14840
|
GM11.4
|
On-site presentation
Grazina Skridlaite, Egle Šatavičė, Gaile Zaludiene, and Aušra Selskiene

Twelve potsherds from the 3rd millennium BCE pottery in southeastern Lithuania were analyzed using X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) to obtain the bulk geochemical and mineralogical characteristics of the ceramic paste. Microstructures and geochemical variability of the clay matrix and temper were studied by Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS). The purpose of this study was to characterize the pottery attributed to the foreign Corded Ware Culture and local Hunter-Gatherers, to imply possible sources of raw material and to evaluate technology choices.

The main clusters of major and trace elements in the bulk compositions (XRF; Šatavičė et al., 2022) reflect the five technological styles identified by the manipulation, shaping, and firing conditions of the ceramic raw material. The XRD and FTIR analysis (Šatavičė et al., 2022) indicated a predominance of iron-rich illite clay, quartz, and alkali feldspar minerals. The early coarse pottery was fired at low to medium temperatures, accompanied by a decrease in the firing temperature of both the cord-decorated and hunter-gatherer pottery. The FTIR and XRD results are not indicative of firing in a reducing atmosphere.

The SEM-EDS with SE and BSE imaging and point analysis allowed to determine the detail mineral chemical composition of the ceramic pastes and tempers. The SEM SE and BSE images showed textural differences in the clay matrix, some of which may be explained by intentionally mixing the clay or a specific pottery surface treatment. The other may be attributed to internal differences in glacial till formation. No grog temper characteristic for the classic Corded Ware was detected, only clay pellets, ferruginous nodules and weathered minerals, which may look like grog to the naked eye. The SEM-EDS point analysis allowed us to investigate the gradual changes in the chemical composition of the clay matrix and to evaluate weathering process. To sum up, both the Corded Ware and the local Hunter-Gatherer pottery were made from the same hydro-micaceous variegated clay from the local Quaternary glacial sediments, which contain weathered granitoid fragments, but display different technological choices for the clay paste preparation, surface treatment, and firing strategies.

The study provided a lot of hitherto unknown information on glacial till, glacial lacustrine and post-glacial lacustrine sediments in SE Lithuania. Their composition, textural properties, susceptibility to weathering were evaluated for the first time in this region.

Šatavičė, E. et al., 2022. Minerals 12, 1006. https://doi.org/10.3390/min12081006.

How to cite: Skridlaite, G., Šatavičė, E., Zaludiene, G., and Selskiene, A.: Linking geology and archeology: investigations of Corded Ware and contemporary Hunter-Gatherer pottery from SE Lithuania by micro-invasive spectroscopic methods, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14840, https://doi.org/10.5194/egusphere-egu23-14840, 2023.

08:45–08:47
|
PICO2.6
|
EGU23-13095
|
GM11.4
|
ECS
|
On-site presentation
Tibor Talas

The catchment basin of the Sarandopotamos on Evia Island (Greece) has been an environment of habitation and worship since the early Neolithic. Many settlements from different periods have been found in this area. It is also in this catchment, close to the Sarandopotamos delta, that the Swiss School of Archaeology in Greece discovered in 2007, the sanctuary of Artemis Amarysia after centuries of investigation. This discovery aside, we still do not understand if, and the extent to which, the human history of occupation and abandonment in this region is related to its environmental history. Thus, the aim of this research is to use a suite of paleoenvironmental reconstruction methods to recreate ancient landscapes, their environments and their evolution to understand the society-environment relation. The sanctuary and its eventual abandonment could potentially be impacted by synergistic reactions between changes in sediment supply, changes in basin hydrology and sea-level all of which may have impacted both the magnitude and frequency of local flooding via changes in river bed level, lateral shifting of the river and water table rises and falls. Thus, the aim of this project is to undertake an integrated, multi-method reconstruction of the local water-sediment environment and to relate this to the history of the sanctuary and wider human settlement. This will then test whether an environmental influence needs to be retained as a hypothesis for wider societal changes in this area. In order to do this, a model of the sedimentary dynamics of the catchment is being carried out using LAPSUS software, and sedimentary cores are being obtained in order to understand the relationship between environmental and human-driven (e.g. land use) change in the catchment, the geomorphic response of the delta and the history of human occupation. The relationship between the delta and eustatic and isostatic history also has to be understood. A single beam eco sounder survey is been conducted in order to investigate the different delta created by the shift in the Sarandopotamos bed. Moreover, in order to better understand the local context and the landscapes observed today, this project is also interested in the geomorphological history of periods prior to human occupation. These different aspects emphasize the complexity of the project but through developing a multi-disciplinary and multi-scale appraisal of environmental history and how it links to human history we may get a better understanding of the extent to which the two are connected. This poster will present preliminary modelling results that demonstrate the sensitivity of the land-ocean interaction to sea-level rise and delta dynamics from the late Pleistocene through the Holocene to the present.

How to cite: Talas, T.: Society-environment links in the area of the sanctuary of Artemis Amarysia (Evia Island, Greece) based upon paleoenvironmental reconstruction, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13095, https://doi.org/10.5194/egusphere-egu23-13095, 2023.

08:47–08:49
|
PICO2.7
|
EGU23-5051
|
GM11.4
|
ECS
|
On-site presentation
Guido Stefano Mariani, Filippo Brandolini, and Rita Melis

When looking into land use and human agency in the modification of the landscape, the concepts of socio-economic opportunities vs. natural constraints is one of the key issues. In comparison with the modern world, past human communities relied much more upon local resources and a tight societal structure to better adapt to the conditions and changes in the surrounding environment. Therefore, in the study of prehistorical cultures land use is both a strong source of information about sustenance strategies and community behaviours and a subject potentially easier to model within a set of natural and social parameters. To this purpose, we investigated the settlement distribution patterns of Bronze Age structures of the Nuragic culture on the island of Sardinia (Italy) using spatial point pattern analysis. We investigated different covariates divided into natural (topography, water and geological resources) and cultural (type of structure, settlement hierarchy), alone and in combination, and looked at how each could explain the distribution of Nuragic sites.

Several covariates from both natural and cultural groups show significant values, with the best representing models of pattern distribution coming from the combination of covariates from both groups. Aside from topographic parameters, distance from known ore deposits seems to have an impact on structure density. Among cultural covariates, there is a clear association between simple and complex megalithic structures (nuraghes). This pattern suggests the collation of smaller structures around larger settlements, either by the former emerging from the presence of the latter or vice versa. These findings offer new insight on the development and ways of life of the Nuragic society in their geographical context, and highlight how the relationship between the physical and the social aspects of human-landscape interactions is fundamentally interdependent. This approach could also represent a potential tool to compare to other Bronze Age and prehistorical communities.

How to cite: Mariani, G. S., Brandolini, F., and Melis, R.: Natural and social patterns in the distribution of Bronze Age Nuragic sites (Sardinia, Italy): using the Widom-Rowlinson penetrable sphere model to understand past human occupation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5051, https://doi.org/10.5194/egusphere-egu23-5051, 2023.

08:49–08:51
|
PICO2.8
|
EGU23-11087
|
GM11.4
|
On-site presentation
|
Andrea Zerboni, Alessandro Perego, Deirdre Ryan, Elisabetta Starnini, and Marta Pappalardo

Archaeological sequences and landscapes preserve evidence of the complex relationship between human communities and climatic/environmental changes occurred in the Quaternary. In this perspective, archaeological sediments and landscapes are proxy data for past ecosystems evolution, as much as for changes in land use, exploitation of natural resources, and human behavior. Most of the latter can be detected and explored with a geoarchaeological approach, using the tools and methods offered by Earth Sciences. For that reason, accurate sampling during the excavation of archaeological sites allows to increase the number and quality information useful to reconstruct the formation of an archaeological sequence, its preservation, and human activities. What can we do when archaeological excavations were carried out before the application of methods from the Earth Sciences? How can we gather information from residual strips or archaeological sediments? The SPHeritage Project (MUR grant: FIRS2019_00040, P.I.: M. Pappalardo) is coping with this challenging task reinvestigating the Balzi Rossi archaeological area (Western Liguria, Northern Italy). This area represents a key site for the reconstruction of how human populations have responded to Pleistocene environmental changes and sea-level variations since the Middle Pleistocene. Local anthropogenic cave sequences have been excavated since the half of the XIX century; unfortunately, the geological processes in charge of the formation of such deposits have been only occasionally considered. As most of the local archaeological sequences were removed, we are combining the analyses of the remnants of strips of anthropogenic sediments still preserved inside local rock shelters as much as sediment samples preserved in museums. Moreover, our geomorphological survey identified new sedimentary sequences preserving information on relative sea level changes, better constraining the time and steps of climate change, sea-level oscillations, and human settlements. Our results confirm that this approach is an effective tool to reconstruct the formative processes of anthropogenic sequences excavated in the past, thus expanding our possibility of understanding the climate-environment-human nexus.

How to cite: Zerboni, A., Perego, A., Ryan, D., Starnini, E., and Pappalardo, M.: Documenting the diversity of human responses to Quaternary environmental changes when the stratigraphic record is gone. The experience of the SPHeritage Project, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11087, https://doi.org/10.5194/egusphere-egu23-11087, 2023.

08:51–08:53
|
PICO2.9
|
EGU23-171
|
GM11.4
|
ECS
|
On-site presentation
|
Yajing Zhao, Zhicai Zhu, Michael J. Benton, and Hao Lu

The study of some classic cases in archeology could provide key information to track where geoarchaeology came from. Joseph Anderson made great contributions to Chinese archaeology and geoarchaeology from the 1920s to 1940s. Previous academic historical studies reflected particularly on pure archaeological methodology; however, in rare cases there has been a focus on the decisive transition from geology to archaeology. Anderson was one of the pioneers who used his knowledge from field work in Europe and America to inform his geoarchaeological work in China. His earliest geoarchaeological study addressed earlier human-environmental interactions by deploying basic concepts and tools. Anderson combined methods from geology with archaeology in three case studies from the 1920s to the 1940s. He came across three dilemmas: i) Analogy dilemma: homological fossils or multiregional origin of artifacts; ii) Principle dilemma: cross-cutting relationships in stratigraphy or archaeology; iii) Time dilemma: synchronic or diachronic systems. At the time, his conclusions drew massive criticism from some archaeologists, especially because of confusion in terminology or principles arising from immature archaeological methodology and neglect of premises in different disciplines. After the development of stratigraphy in the work of classical archaeology before the 1900s and studies on Quaternary human-environmental interactions during the 1900s to 1920s, Anderson found a means to approach the Anthropocene. In summary, here we review the initial geoarchaeological exploration of China during the 1920s to1940s, which is crucial to better understand archaeological academic history and the early history of the Anthropocene as an independent stratigraphic geological unit.

How to cite: Zhao, Y., Zhu, Z., Benton, M. J., and Lu, H.: The infancy of Chinese geoarchaeology: dilemmas from the Quaternary to the Anthropocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-171, https://doi.org/10.5194/egusphere-egu23-171, 2023.

08:53–08:55
|
PICO2.10
|
EGU23-1479
|
GM11.4
|
On-site presentation
Hans von Suchodoletz, Giorgi Kirkitadze, Tiiu Koff, Markus L. Fischer, Rosa M. Poch, Azra Khosravichenar, Birgit Schneider, Bruno Glaser, Susanne Lindauer, Silvan Hoth, Anna Skokan, Levan Navrozashvili, Mikheil Lobjanidze, Mate Akhalaia, Levan Losaberidze, and Mikheil Elashvili

Long-term human-environmental interactions in naturally fragile drylands are an actual topic of geomorphological and geoarchaeological research. Furthermore, many prehistoric societies in drylands were also affected by seismic activity. The semi-arid Shiraki Plain in the tectonically active southeastern Caucasus is currently covered by steppes and largely devoid of settlements. However, numerous Late Bronze to Early Iron Age city-type fortified settlements suggest early state formation between ca. 3.2 – 2.5 ka that abruptly ended after that time. A paleolake was suggested for the lowest plain, and nearby pollen records suggest forest clearcutting of the upper altitudes under a more humid climate during the Late Bronze/Early Iron Ages. Furthermore, also an impact of earthquakes on regional Early Iron Age settlements was suggested. However, regional paleoenvironmental changes and paleoseismicity were not systematically studied so far. We combined geomorphological, sedimentological, chronological, paleoecological and hydrological modelling data to reconstruct regional Holocene paleoenvironmental changes in the Shiraki Plain, and identify possible natural and anthropogenic causes as well as possible seismic events during the Late Bronze/Early Iron Ages. Our results show a balanced to negative Early to Mid-Holocene water balance probably caused by forested upper slopes. Hence, no lake but an incipient Chernozem developed in the lowest plain. Following, Late Bronze/Early Iron Age forest clear-cutting obviously caused lake formation and the deposition of lacustrine sediments derived from intensive soil erosion. Subsequently, regional aridification obviously caused slow lake desiccation. Remains of freshwater fishes indicate that the lake potentially offered valuable ecosystem services for regional prehistoric societies even during the desiccation period. Finally, colluvial coverage of the lake sediments during the last centuries could have been linked with hydrological extremes during the Little Ice Age. Our study demonstrates that the Holocene hydrological balance of the Shiraki Plain was and is situated near a major hydrological threshold, making the landscape very sensitive to also small-scale human or natural influences with serious consequences for local societies. Furthermore, seismites in the studied sediments do not indicate an influence of earthquakes on the main and late phases of Late Bronze/Early Iron Age settlement. Altogether, our study underlines the high value of multi-disciplinary approaches to investigate long-term human-environmental interactions and paleoseismicity in drylands on millennial to centennial time scales.

How to cite: von Suchodoletz, H., Kirkitadze, G., Koff, T., Fischer, M. L., Poch, R. M., Khosravichenar, A., Schneider, B., Glaser, B., Lindauer, S., Hoth, S., Skokan, A., Navrozashvili, L., Lobjanidze, M., Akhalaia, M., Losaberidze, L., and Elashvili, M.: Holocene human-environmental interactions and seismic activity in a Late Bronze to Early Iron Age settlement center in the southeastern Caucasus, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1479, https://doi.org/10.5194/egusphere-egu23-1479, 2023.

08:55–08:57
|
PICO2.11
|
EGU23-809
|
GM11.4
|
ECS
|
On-site presentation
Julia Pagels, Philipp von Rummel, Moheddine Chaouali, and Wiebke Bebermeier

The settlement of Chimtou located in the Medjerda valley is known for its marble quarry, where yellow marble was mined for the entire roman empire. During the Roman period Chimtou has been a major roman city but little is known about the changes during the transition to the Arab period. The interdisciplinary project ISLAMAFR aims to understand the cultural, economic and landscape transformations of the western Medjerda Valley from late antiquity to the early medieval period (600 to 1000 AD).

Earlier studies in the region by Christoph Zielhofer and Dominik Faust have shown that the landscape evolution of the Medjerda Valley derived from alluvial records indicates short-term changes in fluvial dynamics in the Holocene. During the upheaval from Roman to Arab period they reconstructed great flooding events for the Western Medjerda Valley with a brief slow-down in fluvial activity during the Arab conquest. On the basis of their work we will densify the landscape history using two fluvial and alluvial archives from the hinterland of Chimtou for the period from 600 to 1000 AD. We analyzed sediment cores in the laboratory from an infilled oxbow lake of the Oued Medjerda and a flood channel, which regularly overflows. The successive phases of channel infill of the archives allow us to reconstruct the fluvial activity and landscape changes in their surroundings. A multi-proxy approach was applied, integrating the analysis of the dated high-resolution sediment records with geomorphological mapping, archaeological records, and geological and topographical data. Coupling the long-term landscape changes with high resolved short-term landscape changes identifies the human-environmental interactions in the hinterland of Chimtou from late antiquity to early medieval period.  

How to cite: Pagels, J., von Rummel, P., Chaouali, M., and Bebermeier, W.: Meso-scale landscape changes reconstructed from fluvial and alluvial sedimentological archives around the roman town Chimtou (Medjerda Valley), North Tunisia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-809, https://doi.org/10.5194/egusphere-egu23-809, 2023.

08:57–08:59
|
PICO2.12
|
EGU23-9267
|
GM11.4
|
On-site presentation
Joel Roskin, Lotem Robins, Noam Greenbaum, Naomi Porat, and Alla Yaroshevich

The transition from roaming/mobile hunters-gatherers to sedentary settlements in the southern Levant during the Late Epipaleolithic (Natufian) is considered a decisive point of no return in the history of mankind. While the first sedentary settlements are known predominantly from the Mediterranean area of the Levant, the reasons for this fundamental change in subsistence are deeply rooted in socio-economic adaptations of the last mobile hunters-gatherers in the region at large, and in particular, the Sinai-Negev desert. Here diverse nomadic Epipaleolithic groups left behind numerous small open-air sites along the fringe of the northwestern Negev desert dunefield (Israel). Geoarchaeological and palaeoenvironmental analysis of newly discovered Epipaleolithic sites allow better understandings of the unique socio-economic adaptations of these humans.    

The studied middle Epipaleolithic (Ramonian) open-air Ashalim-west site is situated in a unique geomorphic setting atop a slightly deflated surface upon a 3-5 m thick falling dune at the southeastern edge of the Negev dunefield. The dune is comprised of very fine sand that differs from the common vegetated linear dunes (VLD) of the Negev dunefield, dominated by fine sand. The falling dune mantles a 2nd-order wadi slope of a ~40 m high plateau of Eocene chalk, interbedded with chert beds that probably served for lithic production. The small wadi drains into the Besor basin, the largest ephemeral stream in the northwestern Negev, and the only one that currently transverses the dunefield. Therefore, opposed to smaller basins, it was prone to damming by a wide band of encroaching dunes that may have led to extensive water bodies upstream dune dams and possibly beyond drainage divides.

Four OSL ages in the range of 16.5±0.8 – 15.5±0.8 ka from the upper ~2 m of two sections at the Ashalim-west site correlate with raw portable OSL signals, and reflect rapid aeolian deposition. This deposition, synchronous with the main sand incursion episode into the Negev dunefield during the Heinrich 1 cold event (Roskin et al., 2011), closely fits the age associated with the Ramonian character of the overlaying lithics.

The Heinrich 1 massive aeolian episode may have led to major damming of the Besor basin and widespread expansion of dune-dammed water-bodies upon the Besor floodplains. 1.5 km northeast to Ashalim-west site, remains of slightly later Middle Epipaleolithic (Geometric Kebaran) and Late Epipaleolithic (Natufian and Harifian) are sited on top of fossilized aeolian sand between synchronous seasonal dune-dammed water bodies (Goring-Morris, 1997; Vardi et al., 2018). Here OSL ages of aeolian and fluvial sand beneath the sites also date to the Heinrich 1 period. Later and less intense episodes of dune-damming in these parts of the Besor basin may have allowed for short-term camping upon dune crests and flanks adjacent to water bodies. The perched setting of Ashalim-west, overlooking the largest Besor basin, along with two other Middle Epipaleolithic (Ramonian and Mushabian) sites (Rosen, 1990; Rosen and Kolska-Horwitz, 2005) therefor differs from the abundant Epipalaeolithic open-air sites along the dunefield fringe and may indicate a local choice of high grounds during times of intense dune-damming and water body expansion.

 

How to cite: Roskin, J., Robins, L., Greenbaum, N., Porat, N., and Yaroshevich, A.: Reconstructing palaeoenvironments of the last mobile hunters-gatherers in the southern Levant during the middle Epipaleolithic period, northwestern Negev dunefield, Israel, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9267, https://doi.org/10.5194/egusphere-egu23-9267, 2023.

08:59–09:01
|
PICO2.13
|
EGU23-14877
|
GM11.4
|
ECS
|
On-site presentation
Robert Busch, Jacob Hardt, Nadav Nir, and Kristina Pfeiffer

In order to investigate the interaction between different human societies and their effect on the natural environment, we focus on three main questions. 1: Where were historical settlements located? 2: Where have the routes connected these settlements passed? 3: How have both these settlements and routes interacted with local pedological and geomorphological processes? The northern Ethiopian Highlands (Tigray) have a documented settlement history spanning at least the last three millennia. Some sites have a centuries- or even millennia-long settlement continuity and the reconstruction of their entanglement can help to learn about the interaction between past societies. Pathways, be it over long- or short distances, provide the potential to investigate past and present decision-making processes in route planning. Furthermore, pathways are an impressive example of human-environment interactions. These pedogeomorphological expressions of human trampling on the same piece of land over a certain period of time have different soil characteristics (soil compaction, pedogenic iron contents) than adjacent land areas and can influence the surface hydrology. Under certain conditions in hilly terrain, pathways can either stabilize or destabilize the landscape, depending on their orientation with regard to the local hydrological network, and their degree of incision into the surface (holloways). As such, we analyzed geomorphic and pedogenic properties of pathways as well as feedback mechanisms between pathways and gully erosion, and how these may influence route planning. The reconstruction of historical routes in northern Ethiopia using a combined approach of geolocating historical travel reports and historical maps dating back to the 15th century as input data for least-cost-path analyses, have the potential to reveal points of interest for further archaeological research.

How to cite: Busch, R., Hardt, J., Nir, N., and Pfeiffer, K.: Routes of Interaction – Research on pre-modern route-setting, pedogenic and geomorphic effects of trampling, and feedback mechanisms between pathways and gully erosion in the Northern Ethiopian Highlands (Tigray), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14877, https://doi.org/10.5194/egusphere-egu23-14877, 2023.

09:01–10:15