The density and viscosity of a bilithologic plume-fed asthenosphere
- Southern University of Science and Technology, College of engineering, ocean science and engineering, China (jiashao2019@gmail.com)
Pyroxenites are generated by the subduction of sediments and oceanic basalts into the deep mantle. These rocks, together with the larger volume fraction of their surrounding mantle peridotites make up a lithologically heterogeneous two-component mantle, sometimes called a ‘marble-cake’ or ‘plum-pudding’ mantle. Geochemical and petrological observations have shown that pyroxenites play a significant role in the genesis of oceanic island basalts (OIB). However, the consequences of preferential pyroxenite melting on bulk mantle properties have yet to be systematically explored. For example, how does the plume melting process modify a plum-pudding mantle’s bulk density and viscosity? This question could be very important, in particular if the asthenosphere is formed by material from upwelling, melting plumes.
To explore the above questions, we use the thermodynamic software Perple_X to determine densities for different degrees of depleted (i.e. partially melted) peridotites and pyroxenites. We then include these relations into a one-dimensional numerical simulation code for the upwelling and pressure-release melting of a potentially wet multi-component mantle. We investigate the density changes associated with the melting of this idealized mantle’s pyroxenites and peridodites, and also the viscosity change by assuming that the reference viscosity of pyroxenite is 10-100 times that of dry peridotite at similar P-T conditions, since the peridotite’s olivines are the weakest large volume-fraction minerals in the upper mantle. We have explored the effects of mantle temperature, initial water contents, initial fractions of pyroxenites and peridotite, peridotite solidi, and the thickness of the overlying lithosphere which will affect the depth-interval of upwelling and melting. Preliminary results show that significant density and viscosity changes should take place during plume upwelling and melting. ~30% partial melting of pyroxenite would lead to a net bulk density reduction of 0.3%, comparable to the thermal buoyancy associated with a ~100° temperature increase. As long as the surrounding peridotites do not melt, the mixture’s aggregate viscosity will remain that of wet peridotitic mantle; after the peridotites have melted a percent or so, the aggregate viscosity will increase 10-100-fold to that of dry peridotite. This could lead to the formation of a 10-100x asthenospheric viscosity restitic hotspot swell root. Eventual peridotitic melting will reduce the density of the more depleted peridotites relative to fertile peridotite as originally noted by Oxburgh and Parmentier (1977), but to a lesser degree than the density reduction associated with the preferential removal of pyroxenites by their partial melting. A dynamical consequence is that the asthenosphere is likely to be strongly stratified by density, with its most pyroxenite-depleted materials likely to rise to form a layer along the base of the overlying oceanic lithosphere.
How to cite: Shao, J. and Morgan, J.: The density and viscosity of a bilithologic plume-fed asthenosphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10507, https://doi.org/10.5194/egusphere-egu24-10507, 2024.