TS8.1 | Plate Tectonics, Mantle Plumes, and Beyond: the legacy of W. Jason Morgan
EDI
Plate Tectonics, Mantle Plumes, and Beyond: the legacy of W. Jason Morgan
Co-organized by EMRP1/GD1/GMPV10/SM6
Convener: Jason Morgan | Co-conveners: Karin Sigloch, Hans-Peter Bunge, João C. Duarte, Ya-Nan ShiECSECS
Orals
| Tue, 16 Apr, 14:00–15:45 (CEST), 16:15–18:00 (CEST)
 
Room D1
Posters on site
| Attendance Wed, 17 Apr, 16:15–18:00 (CEST) | Display Wed, 17 Apr, 14:00–18:00
 
Hall X2
Posters virtual
| Attendance Wed, 17 Apr, 14:00–15:45 (CEST) | Display Wed, 17 Apr, 08:30–18:00
 
vHall X2
Orals |
Tue, 14:00
Wed, 16:15
Wed, 14:00
In this session we want to celebrate the scientific achievements of W. Jason Morgan, the discoverer of Plate Tectonics and Mantle Plumes, while looking into the future developments of the scientific revolution that he helped to ignite. Fifty years after their discovery, we still have basic questions in our understanding of how Plate Tectonics and Mantle Plumes are linked to the flow structure of the mantle, heat loss from Earth's core, and Earth's evolution from its accretion to the present day. Inspired by these concepts, the modern subdisciplines of Tectonics, Geodynamics, Seismology, Geochemistry, and Earth Magnetism/Rock Physics continue to grapple with gaining a deeper understanding of our planet. Here we welcome contributions that highlight recent progress and problems in this endeavor.

Orals: Tue, 16 Apr | Room D1

Chairpersons: Jason Morgan, Karin Sigloch, Hans-Peter Bunge
14:00–14:05
14:05–14:15
|
EGU24-4754
|
On-site presentation
Barbara Romanowicz, Federico Munch, and Utpal Kumar

With recent progress in resolution in global seismic mantle imaging provided by numerical wavefield computations using the Spectral Element Method and full waveform inversion, Jason Morgan’s suggestion from over 50 years ago that mantle plumes may be rooted at the core-mantle boundary (CMB) has been confirmed. Yet the imaged plumes present intriguing features that contrast with the classical thermal plume model and should inform our understanding of mantle dynamics. Among other features, they are broader than purely thermal plumes, and do not extend straight from the CMB to the corresponding hotspot volcanoes, but they are frequently deflected horizontally in the extended transition zone (400-1000 km depth), so that their lower mantle location can be significantly offset (as much as a 1000 km) from their surface expression. They appear to be thinner in the upper mantle. This, together with similar horizontal flattening observed in subduction zones suggests a change in the radial viscosity structure of the mantle that may occur deeper than usually assumed to be related to the 660 km phase change. The fattest plumes have been shown to be anchored within the perimeter of the large low shear velocity provinces (LLSVPs) and an increasing number of them appear to house mega-ultra low velocity zones within their roots.  Moreover, in the upper mantle, they appear to be associated with regularly spaced low velocity channels aligned with absolute plate motion.

We discuss these features in the light of recent regional imaging updates in the south Atlantic and beneath Yellowstone, contrasting the corresponding mantle plumes, and in particular showing mounting evidence that the LLSVPs are not compact “piles” extending high above the CMB, but rather a bundle of thermo-chemical plumes feeding secondary scale convection in the top 1000 km of the mantle.

How to cite: Romanowicz, B., Munch, F., and Kumar, U.: Mantle plumes imaged by seismic full waveform inversion: from the core-mantle-boundary to surface hotspots, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4754, https://doi.org/10.5194/egusphere-egu24-4754, 2024.

14:15–14:25
|
EGU24-8563
|
ECS
|
On-site presentation
Maria Tsekhmistrenko, Ana Ferreira, and Miguel Miranda

We present initial tomographic findings from the ERC-funded UPFLOW (Upward mantle flow from novel seismic observations) project, showcasing results from a large-scale passive seismology experiment conducted in the Azores-Madeira-Canaries region between July 2021 and September 2022. Recovering 49 out of 50 ocean bottom seismometers (OBSs) in a ~1,000×2,000 km2 area with an average station spacing of ~150-200 km, we analyze approximately ~8000 multi-frequency (T ~2.7-30 s) body-wave travel time cross-correlation measurements derived from UPFLOW OBS data and over 120 teleseismic events. A preliminary P-wave tomographic model is presented, offering insight into the region's mantle dynamics.

Furthermore, by integrating UPFLOW's OBS data with global seismic data from both temporary and permanent stations, we expand the dataset to around 600,000 multifrequency measurements. This comprehensive dataset is employed to construct a global P-wave model, providing enhanced resolution throughout the entire mantle column beneath the Azores-Madeira-Canaries region. A comparative analysis with existing global tomography models is performed, and we discuss the geodynamical implications of our new, high-resolution model.

How to cite: Tsekhmistrenko, M., Ferreira, A., and Miranda, M.: UPFLOW body wave tomography of the whole mantle column beneath the Azores-Madeira-Canaries region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8563, https://doi.org/10.5194/egusphere-egu24-8563, 2024.

14:25–14:35
|
EGU24-11566
|
On-site presentation
Bernhard Steinberger and Poulami Roy

While the temperature drop across the thermal boundary layer (TBL) at the base of the mantle is likely > 1000 K, the temperature anomaly of plumes, which are believed to rise from that TBL is only up to a few hundred K. Reasons for that discrepancy are still poorly understood. It could be due to a combination of (1) the adiabat inside the plume being steeper than in the ambient mantle, (2) the plume cooling due to heat diffusing into the surrounding mantle as it rises, (3) the hottest plume temperature representing a mix of temperatures in the TBL, and not the temperature at the core-mantle boundary (CMB), (4) plumes not directly rising from the CMB due to chemically distinct material at the base of the mantle, (5) a plume-fed asthenosphere which is on average warmer than the mantle adiabat, reducing the temperature difference between plumes and asthenospheric average. Here we use the ASPECT software to model plumes from the lowermost mantle and study their excess temperatures. We use a mantle viscosity that depends on temperature and depth with a strong viscosity increase from below the lithosphere towards the lower mantle, reaching about 1023 Pas above the basal TBL, consistent with geoid modelling and slow motion of mantle plumes. With a mineral physics-derived pyrolite material model, the difference between a plume adiabat and an ambient mantle adiabat just below the lithosphere is about two thirds of that at the base of the mantle, e.g. 1280 K temperature difference at the CMB reduces to about 835 K at 200 km depth. In 2-D cartesian models, plume temperature drops more strongly and is rather time variable due to pulses rising along plume conduits. In contrast, 3-D models of isolated plumes are more steady and, after about 10-20 Myr after the plume head has reached the surface, their temperatures remain rather constant, with excess temperature drop compared to an adiabat for material directly from the CMB usually less than 100 K. This extra temperature drop is small because plume buoyancy flux is high. Hence the above points (2) and (3) do not contribute much to reduce temperature of isolated 3-D plumes. In our models, the asthenosphere is on average about 200-400 K hotter than the mantle beneath, due to plume material feeding into it. While this appears to reduce the plume temperature anomaly, a resulting cooler mantle adiabat also corresponds to an even stronger temperature drop in the basal TBL, offsetting that effect. In the Earth, plumes are likely triggered by slabs and probably rise preferrably above the margins of chemically distinct piles. This could lead to reduced excess temperatures, if plumes are more sheet-like, as the 2-D models, or temperature at their source depth is less than at the CMB.

How to cite: Steinberger, B. and Roy, P.: Why are plume excess temperatures much less than the temperature drop across the core-mantle boundary?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11566, https://doi.org/10.5194/egusphere-egu24-11566, 2024.

14:35–14:45
|
EGU24-415
|
ECS
|
On-site presentation
Antomat Avelino de Macedo Filho, Alisson Oliveira, Valdecir Janasi, and Maria Helena Hollanda

Extensive igneous activity, currently identified from NE Brazil and western Africa to the Falkland Islands and South Africa, preceded the fragmentation of the Western Gondwana supercontinent in the Early Cretaceous. The Paraná-Etendeka Magmatic Province (PEMP) is characterized by continental basaltic flows and igneous plumbing systems in SE South America and its African counterpart. In NE Brazil, dyke swarms and sill complexes compose the Equatorial Atlantic Magmatic Province (EQUAMP). A prominent feature of EQUAMP is the Rio Ceará-Mirim dyke swarm, an arcuate igneous plumbing system approximately 1,100 km in length. Aeromagnetic data suggests that the Rio Ceará-Mirim dykes stretch from the corner of South America to the northwest border of the São Francisco Craton. At this point, the dykes shift orientation to the NNW, extending towards the south, where they appear to connect with the Transminas dyke swarm (northern PEMP). The apparent continuity of dykes as a single entity would constitute a massive transcontinental swarm of about 2,300 km. A similar relationship is observed for the Riacho do Cordeiro (southern EQUAMP) and Vitória-Colatina (northern PEMP) dykes, indicating continuity across the São Francisco Craton of about 1,600 km. This study, supported by new petrological, geochemical, isotopic, and geochronological data, combined with geophysical and geodynamical analyses, demonstrates that the Transminas and Vitória-Colatina dyke swarms share the same composition and age as the Rio Ceará-Mirim and Riacho do Cordeiro dyke swarms, respectively. The set of new evidence supports a genetic connection between the PEMP and EQUAMP. Therefore, they can be collectively referred to as a single large igneous province related to the early stage of the South Atlantic rifting process in the West Gondwana realm: The South Atlantic Magmatic Province.

How to cite: Avelino de Macedo Filho, A., Oliveira, A., Janasi, V., and Hollanda, M. H.: The South Atlantic Magmatic Province: An Integration of Early Cretaceous LIPs in the West Gondwana, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-415, https://doi.org/10.5194/egusphere-egu24-415, 2024.

14:45–14:55
|
EGU24-7255
|
On-site presentation
Vincent Famin, Xavier Quidelleur, and Laurent Michon

Many hotspots worldwide display evidence of fluctuating magmatic emplacement rates in their history, at periods of 1-20 Myr, indicative of changing melt production within underlying mantle plumes. Here we report unprecedentedly short fluctuations of magmatic activity in the Réunion hotspot, emblematic because it started with the Deccan traps suspected to have caused the Cretaceous-Paleogene mass extinction. Using K-Ar geochronology, field observations, and geomorphology, we reconstructed the volcanic history of La Réunion and Mauritius islands, the two latest manifestations of the Réunion hotspot. Our reconstruction reveals coeval magmatic activity pulses and rest intervals for the two islands over the past 4 Ma. The period of these pulses, of ~400 kyr, is an order of magnitude shorter than any fluctuation found on other hotspots. Given the distance between La Réunion and Mauritius (~230 km), this synchronous short-period pulsation of the Réunion hotspot cannot stem from the lithosphere (≤70 km thick), and must be attributed to deeper plume processes. Moreover, this ~400 kyr periodicity coincides with the recurrence time of magmatic phases in the Deccan traps, suggesting that the pulsation began with the initiation of the hotspot. We propose that the Réunion plume is regularly pulsing with a periodicity of ~400 kyr, possibly since the Cretaceous-Paleogene transition, thus delivering extremely short-period waves of magma to the surface, synchronous over hundreds of kilometers. Understanding the geodynamic causes of this superfast beat of the Réunion plume is the objective of the four-year project “Plum-BeatR”, funded by the Agence Nationale de la Recherche (ANR- 23-CE49-0009), starting in 2024.

How to cite: Famin, V., Quidelleur, X., and Michon, L.: Short-period (400 kyr) pulsation of the Réunion plume, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7255, https://doi.org/10.5194/egusphere-egu24-7255, 2024.

14:55–15:05
|
EGU24-17078
|
ECS
|
On-site presentation
Mateo Esteban, Alexander Sobolev, Valentina Batanova, Adrien Vezinet, Evgeny Asafov, and Stepan Krasheninnikov

Meimechite (i.e., rare high MgO and TiO2 ultramafic rocks) concluded the Permo-Triassic Trap magmatism ca. 250 Ma-ago, known as a Siberian Large Igneous Province (SLIP) in the Meimecha-Kotui region, northern Siberia (e.g. [1]). In addition to their elevated MgO contents, meimechite’s melts display almost no crustal contamination, making them ideally suited to investigate the mantle source of the SLIP. Formerly, two opposing models were evoked for the origination of the meimechite: i) the hottest phanerozoic mantle plume [1] or ii) water fluxing of the asthenospheric mantle in a long-lived subduction zone [2]. Based on an extended analytical workflow we will shed new light on the source of these unusual rocks.

Here we present new results for more than 300 olivine-hosted homogenized melt inclusions from Siberian meimechite including major, minor and trace elements, water and Sr-isotopes contents (EPMA, LA-ICP-MS and Raman spectrometry) along with the chemical composition of their host olivine (EPMA, LA-ICP-MS). When encountered, spinel inclusions were analysed by EPMA for major element abundances.

We show that the Siberian meimechite crystallised from a highly magnesian (MgO > 22 wt%) parental melt deficient in H2O compared to Ce and K concentrations, which was degassed of most of its CO2 and likely part of its H2O while rising to shallower depths. Three independent geothermometers (Mg-Fe and Sc-Y olivine melt and Al olivine-spinel) confirm the high crystallisation temperature of the Siberian meimechite, ca. 1400oC. Furthermore, the calculated potential temperatures (over 1500oC) imply a mantle plume origin of the Siberian meimechite and, consequently, of the SLIP.

Initial 87Sr/86Sr values of melt inclusions reveal heterogeneous populations ranging from 0.7022±0.0002 to 0.7039±0.0004 suggesting mixing between at least two depleted mantle components. The less depleted group has an average Bulk Silicate Earth (BSE) model age of 876±88 Ma, whereas the more depleted group is significantly older with an average model age of 1716±76 Ma. All source components display significantly fractionated proxies of continental crust extraction (Nb/U, Th/U and Ce/Pb [3]), indicating major events of continental crustal formation and deep recycling of residual lithosphere before the Proterozoic Eon.

References:

[1] – Sobolev, A.V., et al., Russ. Geol. Geophys., 2009 and references therein. [2] – Ivanov, A.V., et al., Chem. Geol., 2018. [3]- Hofmann, A.W. et al. EPSL, 1986.

How to cite: Esteban, M., Sobolev, A., Batanova, V., Vezinet, A., Asafov, E., and Krasheninnikov, S.: Insight into the formation of the Siberian Large Igneous Province: A study of olivine-hosted melt inclusion in meimechite, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17078, https://doi.org/10.5194/egusphere-egu24-17078, 2024.

15:05–15:15
|
EGU24-2711
|
ECS
|
On-site presentation
Annalise Cucchiaro, Nicolas Flament, Maëlis Arnould, and Noel Cressie

As part of mantle convection, mantle plumes rise from the deep Earth, leading to volcanic eruptions during which large volumes of mafic magma are emplaced at Earth’s surface over a few million years. In 1971, Jason Morgan showed that seamount chains could be used to calculate the absolute motion of tectonic plates above fixed mantle plumes. This ground-breaking work notably led to the study of the relationship between Earth’s deep interior and its surface. Mantle plumes have been critical to constrain absolute plate motions in Earth’s recent geological past, with the development of both fixed-hotspot and moving-hotspot plate-motion models. Recent studies also revealed a statistical link between large volcanic eruptions and basal mantle structures in space and time, suggesting that large volcanic eruptions, mantle plumes, and hot basal structures are intrinsically connected. In these studies, mantle plumes were considered as the implicit process connecting volcanic eruptions at the surface to hot basal mantle structures. Geodynamic models suggest that mantle plumes are generated by two large antipodal hot basal mantle structures, up to ~1,200 km thick, and shaped by subducted oceanic crust through time. Here, we systematically compare three volcanic-eruption databases, four global tomographic models, and six reconstructions of past global mantle flow, to investigate the spatio-temporal links between volcanic eruptions, hot basal mantle structures, and modelled mantle plumes from 300 million years ago to the present day. We find that large volcanic eruptions are spatially closer to fixed and moving hot basal mantle structures than to modelled mantle plumes, because mantle plumes cover an area that is five orders of magnitude smaller than the area covered by hot basal mantle structures. The strength of the spatial-statistical relationships is largest between volcanic eruptions and modelled mantle plumes and, overall, it is larger between volcanic eruptions and moving basal mantle structures than between volcanic eruptions and fixed basal mantle structures.  This suggests that large volcanic eruptions are preferentially associated with mantle plumes generated from the interior of mobile basal mantle structures, which is in sharp contrast to previous studies that suggested mantle plumes are generated from the edges of fixed basal mantle structures.

How to cite: Cucchiaro, A., Flament, N., Arnould, M., and Cressie, N.: Links between large volcanic eruptions, basal mantle structures and mantle plumes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2711, https://doi.org/10.5194/egusphere-egu24-2711, 2024.

15:15–15:25
|
EGU24-12584
|
On-site presentation
John Tarduno

W. Jason Morgan’s seminal development of plate tectonic theory set the foundation for current investigations of mantle convection and the nature of deep mantle plumes. More recently, hotspots have been proposed to occur at the edges of stationary African and Pacific large low shear velocity provinces (LLSVPs) and that this has a special significance in terms of plume/hotspot generation. The basis for this proposed global correlation has in turn been challenged, and whether LLSVPs edges are the sites of initial mantle plume formation debated. A different approach is to consider hotspots with the greatest buoyancy flux because to be successful, any global model should be able to explain their origin. In all analyses of buoyancy flux, the Pacific’s Hawaiian hotspot, which figured prominently in Jason’s early papers, stands out above all others. However, paleomagnetic and age-distance relationships indicate that the Hawaiian hotspot originated >1500 km N of the Pacific LLSVP and subsequently drifted to its edge where it may have become anchored. The hotspot with the highest buoyancy flux in the Atlantic is Iceland, which is far from the African LLSVP. Iceland represents the youngest of three past episodes of extraordinary volcanism affecting the North Atlantic-Arctic region, namely the North Atlantic Tertiary Volcanic Province, the High Arctic Large Igneous Province, and the Siberian Traps. This recurrent volcanism spanning more than 250 million years requires either drift of a single pulsing plume, or separate plumes, generated far from the edge of the proposed stationary African LLSVP. Thus, the nature and histories of these robust hotspots in the Pacific and Atlantic imply an origin distinct from stationary LLSVPs.  

How to cite: Tarduno, J.: Robust hotspot origin far from LLSVP margins, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12584, https://doi.org/10.5194/egusphere-egu24-12584, 2024.

15:25–15:35
|
EGU24-4020
|
ECS
|
On-site presentation
|
Björn Heyn, Grace Shephard, and Clint Conrad

Between about 130 and 75 Ma, the Arctic was impacted by widespread and long-lived volcanism known as the High Arctic Large Igneous Province (HALIP). HALIP is a very unusual large igneous province because it exhibits prolonged melting over more than 50 Myr with pulses of activity, an observation that is difficult to reconcile with the classic view of large igneous provinces and associated melting in plume heads. Hence, the suggested plume-related origin and classification of HALIP as a large igneous province has been questioned, and alternative mechanisms have been invoked to explain at least part of the volcanism. However, the Arctic also exhibits a very complex and time-dependent tectonic history that includes cratons, continental margins and rifting, all of which are expected to interact with the rising plume and affect its melting behaviour.

 

Here, we use 2-D numerical models that include melting and melt migration to investigate a rising plume interacting with a lithosphere of variable thickness, i.e. an extended-basin-to-craton setting. Models reveal significant spatial and temporal variations in melt volumes and pulses of melt production, including protracted melting for at least about 30-40 Myr, but only if feedback between melt and mantle convection is accounted for. In particular, we find that melt migration transports heat upwards and enhances local lithospheric thinning, resulting in a more heterogeneous distribution of melting zones within the plume head underneath the Sverdrup Basin. Once the thicker continental and cratonic lithosphere move over the plume, plume material is deflected from underneath the Greenland craton and can then re-activate melting zones below the previously plume-influenced Sverdrup Basin, even though the plume is already ∼500 km away. Hence, melting zones may not represent the location of the deeper plume stem at a given time. Plume flux pulses associated with mantle processes, rifting of tectonic plates or magmatic processes within the crust may alter the timing and volume of secondary pulses and their surface expression, but are not required to generate pulses in magmatic activity. Hence, we propose that the prolonged period of rejuvenated magmatism of HALIP is consistent with plume impingement on a cratonic edge and subsequent plume-lithosphere interaction. Based on melt fractions, our models suggest that HALIP magmatism should exhibit plume-related trace element signatures through time, but potentially shifting from mostly tholeiitic magmas in the first pulse towards more alkalic compositions for secondary pulses, with regional variations in timing of magma types.

How to cite: Heyn, B., Shephard, G., and Conrad, C.: Prolonged multi-phase volcanism in the Arctic induced by plume-lithosphere interaction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4020, https://doi.org/10.5194/egusphere-egu24-4020, 2024.

15:35–15:45
|
EGU24-8567
|
On-site presentation
Alexander Koptev and Sierd Cloetingh

The North Atlantic region is a prime example of the interaction between plate tectonic movements and thermal instabilities in the Earth’s mantle. The opening of the Labrador Sea/Baffin Bay and the North Atlantic, the widespread volcanism and the localized uplift of the topography in Greenland and the North Atlantic are traditionally attributed to the thermal effect of the Iceland mantle plume. However, several prominent features of the region – the temporal synchrony of magmatism and break-up events, the symmetrical configuration of the Greenland-Iceland-Faroe Ridge, and the diachronous domal uplift of the North Atlantic rifted margins – have inspired alternative, “non-plume” views. According to these, the North Atlantic Igneous Province (NAIP) and Iceland magmatism originate from plate tectonic processes sourced in the shallow upper mantle, at odds with the unequivocal presence of deep-seated low-velocity seismic anomalies beneath Iceland and the isotopic signatures of plume-derived melts in Cenozoic magmatic units.

We resolve apparent contradictions in the observations and reconstructions and reconcile end-member concepts of the Late Mesozoic-Cenozoic evolution of the North Atlantic realm. We show that simultaneous Paleocene (~62-58 Ma) magmatism in Western Greenland/Baffin Island and the British Isles, which together form the NAIP, is driven by two processes accidently coinciding in time: 1) the propagation of the Labrador Sea/Baffin Bay spreading axis has overlapped with the ~100-80 Ma dated segment of the Iceland hotspot track near the West Greenland margin, while 2) the actual tail of the Iceland plume has reached the eastern continental margin of Greenland, allowing a horizontal flow of hot plume material along corridors of relatively thinned lithosphere towards Southern Scandinavia and Scotland/Ireland. In this framework, the subsequent formation of the symmetrical Greenland-Iceland-Faroe Ridge can be coherently explained by the continuous supply of hot plume material through an established channel between Eastern Greenland and the British Isles. In contrast to the Scotland/Ireland region, the South Norway continental lithosphere remains too thick to enable localized uplift of the topography and melting immediately after plume lobe emplacement at ~60 Ma. Therefore, the development of topographic domes in Southern Scandinavia only started ~30 Myr later in the Oligocene as a consequence of increasing ridge-push compression that built up during the opening of the Norwegian-Greenland Sea.

The evolution of the North Atlantic region shows that a thermal anomaly that has been hidden below a thick lithosphere for tens of Myr without signs of excessive magmatism can be re-initialized (or “re-awakened”) by the lateral propagation of spreading ridges or by the tapping of its source beneath thinner segments of the overlying lithosphere due to horizontal plate movements. We dub this type of Large Igneous Province (LIP) as LIP-Dornröschen (LIP-Sleeping Beauty). We hypothesise that the term LIP-Dornröschen may be applicable to a broad family of LIPs, including Precambrian and oceanic LIPs. This means that the interpretation of the timing of LIP formation from the perspective of mantle dynamics should be treated with caution, as there may be delays between the timing of upwelling in the mantle and detectable magmatic manifestations at or near the Earth’s surface.

How to cite: Koptev, A. and Cloetingh, S.: Iceland plume and its magmatic manifestations: LIP-Dornröschen in the North Atlantic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8567, https://doi.org/10.5194/egusphere-egu24-8567, 2024.

Coffee break
Chairpersons: João C. Duarte, Ya-Nan Shi, Jason Morgan
16:15–16:25
|
EGU24-18017
|
On-site presentation
Paola Vannucchi, Yanan Shi, Ting Yang, Gou Fujie, and Jason P. Morgan

Most volcanic activity on Earth is linked to well-known processes like plate tectonics and mantle plumes, typically through mechanisms such as flux-melting in subduction zones and decompression-melting at ridges and mantle plumes. However, recent discoveries point to a different origin for some intraplate volcanism, a key example being 'Petit-Spots'—small volcanic mounds that erupt on incoming plates near subduction zones. Here we propose that flexural pumping, occurring as the subducting slab unbends, transports fluids released by intra-slab dehydration to the slab's base where these fluids induce flux-melting in the warm slab base and asthenosphere beneath the slab. Counterflow in the buoyant asthenosphere beneath the subducting plate further expands the region of petit-spot volcanism. This mechanism not only explains the origin of petit-spot volcanism but also suggests a broader conceptual model for generating low-degree melts in the oceanic asthenosphere.

How to cite: Vannucchi, P., Shi, Y., Yang, T., Fujie, G., and Morgan, J. P.: Flexural Pumping and the Origins of Petit-Spot Volcanism, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18017, https://doi.org/10.5194/egusphere-egu24-18017, 2024.

16:25–16:35
|
EGU24-13570
|
On-site presentation
Colleen Dalton, Timothy Herbert, Douglas Wilson, and Weimin Si

The rate of ocean-crust production exerts control over mantle heat loss, sea level, seawater chemistry, and climate. Reconstructing ocean-crust production rates back in time relies heavily on the distribution of present-day seafloor age. Different strategies to account for the incomplete preservation of older seafloor have led to differing conclusions about how much production rates have changed since the Cretaceous, if at all. We have constructed a new global synthesis of ocean-crust production rates along 18 mid-ocean ridges for the past 19 Myr at high temporal resolution.  We find that the global ocean-crust production rate decreased by ~37% from its maximum during 19-15 Ma to its minimum during 6-4 Ma. Our ability to resolve these changes at a statistically significant level is due to the availability of many new plate reconstructions at high temporal resolution and our use of an astronomically calibrated magnetic time scale with small uncertainties in reversal ages. We show that the reduction in crust production occurred because spreading rates slowed down along almost all ridge systems. While the total ridge length has varied little since 19 Ma, some fast-spreading ridges have grown shorter and slow-spreading ridges grown longer, amplifying the spreading-rate changes. The change in crust production rate skews the seafloor area-age distribution toward older crust, and we estimate that sea level may have fallen by as much as 32-37 m and oceanic heat flow may have been reduced by 6%. We also show, using a simple model of the carbon cycle, that the inferred changes in tectonic degassing resulting from the crust-production changes can account for the majority of long-term surface-temperature evolution since 19 Ma.

How to cite: Dalton, C., Herbert, T., Wilson, D., and Si, W.: Changes in the Rate of Ocean Crust Production Over the Past 19 Myr: Implications for Sea Level, Mantle Heat Loss, and Climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13570, https://doi.org/10.5194/egusphere-egu24-13570, 2024.

16:35–16:45
|
EGU24-9504
|
ECS
|
On-site presentation
Sibiao Liu, Fan Zhang, Lei Zhao, Xubo Zhang, and Jian Lin

Hotspot-related anomalies observed in mid-ocean ridge systems are widely interpreted as the result of upwelling mantle plumes interacting with spreading ridges. A key indicator of this interaction is 'waist width', which measures the distance of plume flow along the ridge. Current scaling laws for waist width, premised on a gradual decrease in plume temperature along the ridge, often overlook sub-ridge longitudinal thermal variations, potentially biasing width measurements at various depths. In this study, we refined waist width measurements by tracking the material flow and its thermal diffusion from the plume source in plume-ridge interaction models. These non-Newtonian viscoplastic models integrate ridge spreading, lithospheric cooling with hydrothermal circulation, and mantle dehydration. Model results show that the hot plume initially boosts upwelling from the deep mantle to near the dehydration zone, followed by a slowdown and lateral spread across and along the ridge. In addition to strongly correlating with plume flux and spreading rate, the pattern and distance of plume flow vary with depth. At deeper depths, the plume expands radially in a pancake-like thermal pattern with shorter along-ridge distances, while shallower, it shows an axial pipe-like dispersion over longer distances, forming a concave structure. This is shaped by the cooling of the plume material during the phase of decelerated upwelling and along-ridge dispersion within the dehydration zone and cooling of the oceanic lithosphere associated with plate spreading. Estimates of plume buoyancy flux, derived from both material- and isotherm-tracking waist widths, show significant variations at different depths, suggesting that understanding depth-dependent plume dynamics beneath mid-ocean ridges is crucial for reconciling the observed discrepancies in buoyancy flux estimates.

How to cite: Liu, S., Zhang, F., Zhao, L., Zhang, X., and Lin, J.: Depth dependence of mantle plume flow beneath mid-ocean ridges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9504, https://doi.org/10.5194/egusphere-egu24-9504, 2024.

16:45–16:55
|
EGU24-17862
|
On-site presentation
|
Graeme Eagles

Models depicting the plate kinematic development of the Indian Ocean have a range of applications including in paleogeographic studies and in formulating and testing ideas about plume/plate interactions. Until now, these applications have been forced to tolerate egregious model/observation inconsistencies concerning the relative motion history of India and Madagascar. Whilst the Phanerozoic record of these motions begins with ∼90 Ma basalts that erupted along a narrow rift basin, all modern plate kinematic models for the Indian Ocean predict hundreds of kilometres of relative motions, in diverse and conflicting senses, over several tens of millions of years prior to the eruptions. The diversity of these predicted motions suggests they are artefacts that arise from differing approaches taken to modelling the development of the eastern and western parts of the ocean, rather than a reflection of insufficient or absent geological observations. In this contribution, I present a new model for the early plate kinematic development of the Indian Ocean that is constrained by observational evidence for relative plate motion azimuths in the Enderby and western Bay of Bengal basins and by explicitly maintaining a rigid mid- and early Cretaceous Indo-Malagasy body. This approach requires the model to feature two small tectonic plates between the continental margins of eastern India and East Antarctica. The older of the two, Mandara, is an intraoceanic plate in the Enderby Basin that may have formed in relation to delivery of excess melt from the Kerguelen plume to the basin's mid-ocean ridge. The younger plate, Vasuki, in the western Bay of Bengal Basin, also accommodated plume-related melt at its boundaries, in its case from the Marion and possibly also the Crozet plume. The model shows this plate transporting Sri Lanka ∼800 km southwards along the eastern Indian continental margin to its present location. The model also requires the presence of around half a million square kilometres of continental crust beneath the Kerguelen Plateau, which lies within the range of published observation-led estimates of its extent. Neither the absence of evidence for relative motions between India and Madagascar prior to ∼90 Ma, nor the modelled Euler rotation pole's location afterwards, are consistent with suggestions that traction forces related to the ascent of the Marion plume drove the mid-Cretaceous onset of subduction in the western Neotethys.

How to cite: Eagles, G.: A new model of plate kinematics describing the early development of the Indian Ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17862, https://doi.org/10.5194/egusphere-egu24-17862, 2024.

16:55–17:05
|
EGU24-11883
|
ECS
|
Virtual presentation
|
Simran Guleriya, Anouk Beniest, and Sudheer Kumar Tiwari

The Rajmahal Traps is one of the two major Large Igneous Provinces (LIPs) that erupted in the Indian subcontinent in the Mesozoic. The trap was the product of activity at the Kerguelen hotspot, located in the Indian Ocean, that initiated around 117 Ma. Earlier studies on the eruption location of the Rajmahal trap show that its location does not coincide with the present-day location of the Kerguelen Hotspot. This difference in the paleo-locations could be the result of mantle dynamics beneath the Indian Ocean during the Cretaceous and has been explained with concepts such as the multiple diapir-single plume model, the migration pathway of the hotspot beneath the mantle, and the complex plume-ridge interaction.

In this study, we use paleogeographic reconstruction software GPlates to reconstruct the paleogeography of the Rajmahal Traps on the Indian subcontinent plate in an Antarctica fixed reference frame since 117 Ma to pin-point the paleo-location of the Kerguelen hotspot and eruption location of the Rajmahal trap along with the tectonic changes that the Indian Ocean was encountering. The mantle structure below the Indian Ocean was further studied using publicly available P-wave tomography data. The paleogeographic reconstruction linked to the mantle structure hints towards the presence of a tree-like hotspot-plume structure beneath the Kerguelen hotspot where a deep-seated single plume feeds into various fissures at the surface which are active at different points in time.

Our kinematic analysis for the Indian Plate reveals significant changes in the velocity of the plate since the Cretaceous at specific points in time in response to tectonic activities initiated by the plumes present in the Indian Ocean. These activities that link to changes in the velocity include interactions with the Morondova plume (velocity increase at 90 Ma) and Reunion hotspot (velocity increase between 78 – 62 Ma), and other processes like continental collision (velocity decrease at 56 Ma and between 50-43 Ma) and slab pull (velocity increase at 56 Ma). Using this new velocity profile, we have developed a revised velocity model for the drift of the Indian subcontinent since the Cretaceous.

How to cite: Guleriya, S., Beniest, A., and Tiwari, S. K.: Change in eruption location in Kerguelen hotspot and Kinematic Reconstruction of Rajmahal Trap:  Implications for Cretaceous to present day Geodynamics of Indian plate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11883, https://doi.org/10.5194/egusphere-egu24-11883, 2024.

17:05–17:15
|
EGU24-17341
|
ECS
|
On-site presentation
Ingo L. Stotz, Berta Vilacís, Jorge N. Hayek, Sara Carena, Anke Friedrich, and Hans-Peter Bunge

Our understanding of plate tectonics and mantle convection has made significant progress in recent decades, yet the specific impact of mantle plumes on plate tectonics remains a topic of controversy. The motions of the Earth’s lithosphere serves as a powerful lens into the dynamic behavior of the asthenosphere and deeper mantle, helping to untangle such controversies. Surface observations, therefore, provide important constraints on mantle convection patterns through space/time. Among these observations, the record of plate motion changes stands out, as it enables the geographical identification of torque sources. Consequently, surface observations provide essential constraints for theoretical models and numerical simulations.

The analytical Poiseuille flow model applied to upper mantle flux in the asthenosphere offers a robust and testable prediction: Poiseuille flow induced plate motion changes should coincide with regional scale mantle convection induced elevation changes. Mantle plumes can generate such pressure driven flows, along with intraplate magmatism and induce buoyancy-driven uplift that leaves an imprint in the sedimentary record.

Here, I will present a synthesis of geological and geophysical observations, supported by analytical calculations, to illustrate that a significant number of plate motion changes can be attributed primarily to torques originating from mantle plumes.

How to cite: Stotz, I. L., Vilacís, B., Hayek, J. N., Carena, S., Friedrich, A., and Bunge, H.-P.: The Influence of Mantle Plumes on Plate Tectonics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17341, https://doi.org/10.5194/egusphere-egu24-17341, 2024.

17:15–17:25
|
EGU24-4314
|
On-site presentation
Qunfan Zheng and Jiashun Hu

The India-Asia convergence has persisted since the onset of collision at ~55 Ma, indicating the driving forces of Indian indentation do not disappear on continental collision in the convergence process. What drives ongoing India-Asia convergence? This puzzle cannot be well resolved by the traditional theory of plate tectonics and the concept of Wilson Cycle. Consequently, questions concerning the primary driving force of the ongoing India-Asia convergence and the magnitude of this force still await an answer. Previous works have proposed multiple candidates for the primary driver of India-Asia convergence, including the continental subduction of the Indian lithosphere under Tibet, oceanic subduction at the Sumatra-Java trench, as well as the basal drag exerted by the mantle flow on the base of Indo-Australia plate. Here we present global geodynamic models to investigate the driving forces behind the India-Asia convergence, which produce good fits to the observed motions, stresses and strains within the Indo-Australia plate. On this basis, we quantitatively calculate the magnitude of effective forces of boundary forces (slab pull and ridge push) and basal drag. We conclude that the Sumatra-Java subduction is the primary driver of the ongoing India-Asia convergence. Indo-Australia plate motion is driven at the Sumatra-Java trench, impeded along the Himalaya, which could increase the shear stress within the plate. Different from the recent emphasis on the basal drag as a dominant driving force for the India-Asia convergence, this study shows that basal drag acts as the resisting force for the northeastward motion of the giant Indo-Australia plate, though it serves as a driver in some local regions.

 

How to cite: Zheng, Q. and Hu, J.: Driving forces for the ongoing India-Asia convergence: insight from global high-resolution numerical modeling of mantle convection, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4314, https://doi.org/10.5194/egusphere-egu24-4314, 2024.

17:25–17:35
|
EGU24-7075
|
On-site presentation
Simone Pilia, Giampiero Iaffaldano, Rhodri Davies, Paolo Sossi, Scott Whattam, and Hao Hu

There are rare occurrences on Earth where mantle plumes intersect with continents, resulting in surface volcanism.Unlike their more common counterparts in oceanic lithosphere, where the ascent of melts is facilitated by a thinner lithosphere, identifying continental plumes is challenging. Surface volcanism, traditionally a key indicator of mantle plumes, may play a diminished role in regions characterized by complex tectonics and variations in lithospheric thickness.

Eastern Oman provides an excellent example where a continental mantle plume has remained undetected due to the absence of current surface volcanism. The region exhibits evidence of intraplate basanites, although with an age of ~35-40 Ma. Given their geochemical signature, these alkaline rocks likely originated from a mixture of melts from a plume-derived source and those from a lithosphere-derived component. Using P- and S-wave arrival-time residuals from distant earthquakes, we image a new mantle plume in eastern Oman, which we name the Salma plume. This continental plume is revealed in our 3-D P- and S-wave tomographic models as a 200 km low-velocity conduit extending to at least the base of the upper mantle, and located below the area of Tertiary intraplate volcanism. Despite experiencing minimal shortening since the Paleogene, the shallow-marine sediments of the Salma Plateau in eastern Oman reach elevations exceeding 2000 meters. Ongoing uplift, indicated by elevated Quaternary marine terraces, suggests that the plateau is still rising. The present uplift rate is modest but maps of residual topography show a positive trend in eastern Oman that can be associated to the presence of a plume.

Incorporating a geodynamic perspective, our analysis of noise-mitigated Indian plate motion relative to Somalia reveals that India underwent a constant-velocity reorientation of approximately 15˚  from 48 to 30 Ma, concurrent with the arrival of the plume head beneath eastern Oman. We quantitatively demonstrate that increased asthenospheric flow induced by the plume flux in eastern Oman, adjacent to the Indian plate in the Eocene, may be responsible for deflecting the Indian plate path, as indicated in kinematic reconstructions.

The consequence of ignoring a plume in Oman is that we were unable to understand many of the enigmatic observations from plume impingement at ~40 Ma. Our study underscores the potential of combining seismology, geology, geochemistry, and geodynamics to be a more effective approach for detecting continental plumes than relying solely on surface volcanism, and has transformed our understanding of the tectonic evolution of the area and beyond.

How to cite: Pilia, S., Iaffaldano, G., Davies, R., Sossi, P., Whattam, S., and Hu, H.: Absence of surface volcanism and the indeterminate evidence for continental mantle plumes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7075, https://doi.org/10.5194/egusphere-egu24-7075, 2024.

17:35–17:45
|
EGU24-19570
|
ECS
|
On-site presentation
Andres Felipe Rodriguez Corcho, Sabin Zahirovic, Michele Anthony, Dene Tarkyth, Christopher Alfonso, Maria Seton, Dietmar Muller, Bruce Eglington, and Basil Tikoff

The western North American margin records multiple phases of rifting and convergence, resulting from the interaction between western Laurentia, rifted continental fragments, and intra-oceanic terranes originating in the Panthalassa and Pacific oceanic plates. Quantitative plate reconstructions of this margin have prioritised diverging interpretations regarding the subduction polarities of eastern Panthalassa terranes during Jurassic to Cretaceous times. These discrepancies arise from the reliance on either seismic tomography or surface geology as the first-order constraint for determining subduction polarity. We present an updated tectonic reconstruction for western North America from the Devonian to present day. In this new model, we reconcile geological histories based on surface geology, geochronology, paleomagnetism and isotopic data, with interpretations of seismic tomography. The new reconstructions account for the tectonic evolution of the Alaska orocline, western Canada and western United States (US) and south-western (SW) North America, which have not been implemented in detail in previous tectonic models. Our model suggests that most of the terranes of western North America were rifted off Laurentia and Baltica during Devonian to Triassic extension and trench-retreat. Following back-arc rifting and opening, many of the terranes (e.g. Insular, Intermontane, Angayucham) experienced an intra-oceanic phase before accreting to the continental margin of North America at different times, between Early Triassic to Late Cretaceous times. The model illustrates the collision of the Angayucham Terrane, counterclockwise rotation and orocline formation in Alaska during the middle Jurassic. In western US and SW North America, the model showcases Jurassic to Cretaceous extension and rifting. Extension starts first in western US (170-145 Ma) and is then propagated south, causing the opening of the Bisbee Basin (161-105 Ma). The model also captures the Late Cretaceous collision of the Insular Terrane, which triggered transpression, terrane translation for thousands of kilometers and clockwise rotation in western US during Late Cretaceous to Paleogene times. Our updated model highlights the importance of surface geology in constraining the polarity of ancient subduction zones interpreted from seismic tomography.

How to cite: Rodriguez Corcho, A. F., Zahirovic, S., Anthony, M., Tarkyth, D., Alfonso, C., Seton, M., Muller, D., Eglington, B., and Tikoff, B.: The tectonic evolution of the western North American margin since the Devonian, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19570, https://doi.org/10.5194/egusphere-egu24-19570, 2024.

17:45–17:55
|
EGU24-11719
|
On-site presentation
Veronique Van Elewyck, Joao Coelho, Yael Armando Deniz Hernandez, Stephanie Durand, Nobuaki Fuji, Edouard Kaminski, Lukas Maderer, Eric Mittelstaedt, and Rebekah Pestes

Much has been learned about the deep Earth through a combination of geophysical constraints, theories of Earth’s formation, and seismic measurements. However, such methods alone cannot directly resolve the full structure of the inner Earth, e.g. in terms of matter density, composition and temperature distributions.

Complementary information about Earth’s interior can be provided by small, nearly massless elementary particles called neutrinos that propagate through the Earth. Neutrinos exist in different flavours and are known to experience a quantum phenomenon of flavour oscillation as they propagate. With an extremely small chance of interacting with matter, neutrinos can travel long distances through very dense materials (e.g., the Earth’s core). For atmospheric neutrinos of energy ~GeV crossing the Earth, the flavour oscillation patterns are distorted due to coherent forward scattering on electrons along their path. Measuring the flavour, energy and angular distributions of such neutrinos therefore provides sensitivity to a new observable of geophysical interest: the electron number density in the layers of matter traversed.

After a short introduction to the concepts of neutrino oscillation tomography, we will discuss the potential of this method to address open questions concerning inner Earth's structure and composition (such as the amount of light elements in the core and the nature of LLSVPs), the status of sensitivity studies, and the perspectives opened by the next generation of atmospheric neutrino detectors.

How to cite: Van Elewyck, V., Coelho, J., Deniz Hernandez, Y. A., Durand, S., Fuji, N., Kaminski, E., Maderer, L., Mittelstaedt, E., and Pestes, R.: Prospects of Neutrino Oscillation Tomography of the Earth , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11719, https://doi.org/10.5194/egusphere-egu24-11719, 2024.

17:55–18:00

Posters on site: Wed, 17 Apr, 16:15–18:00 | Hall X2

Display time: Wed, 17 Apr 14:00–Wed, 17 Apr 18:00
Chairpersons: Jason Morgan, João C. Duarte, Ya-Nan Shi
X2.88
|
EGU24-2624
|
ECS
Yiming Luo, Jian Lin, Zhiyuan Zhou, Fan Zhang, Xubo Zhang, and Jinchang Zhang

We investigated the impacts of the Kerguelen and Amsterdam-St. Paul (ASP) hotspots on mantle evolution and crustal accretion of nearby spreading ridges in the Southeastern Indian Ocean. Gravity analysis revealed enhanced magmatism and thickened crust along the ridge caused by the Kerguelen and ASP hotspots. By employing plate motions derived from the GPlates global plate reconstruction model, along with the ASPECT 3-D mantle convection code, we presented a comprehensive depiction of the ridge-dual hotspot system, which has been relatively underexplored in previous research. Model results indicated that the Kerguelen hotspot had a significantly greater influence on mantle temperature and ridge crustal thickness compared to the ASP hotspot. Furthermore, there is evidence suggesting a potential interaction between the dual hotspots, leading to the migration of ASP plume materials towards the Kerguelen plume.

How to cite: Luo, Y., Lin, J., Zhou, Z., Zhang, F., Zhang, X., and Zhang, J.: Ridge-dual hotspots interaction and potential hotspot-hotspot interaction in the Southeastern Indian Ocean , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2624, https://doi.org/10.5194/egusphere-egu24-2624, 2024.

X2.89
|
EGU24-6247
|
ECS
Abigail Plimmer, Huw Davies, and James Panton

Subduction is one of the most fundamental processes on Earth, linking the lithosphere and mantle and is a key driving force in mantle circulation. Despite this, and the advancement of geophysical methods which allow us to better understand mantle dynamics, our understanding of slab behaviour is still limited. The Earth is a very complex system, and so conclusions regarding slab dynamics are also sensitive to the interplay between countless processes acting within the mantle. 

There is much to learn about slab sinking in the mantle from considering a single 'perfect' plate, such that the dynamics can be isolated from any pre-established or distal processes. We present a range of 3D spherical mantle circulation models which evolve from the initial condition, driven by a 'perfect' plate at the surface. Each of these plates comprises a rectangular geometry, bound by a subduction zone on one side, a spreading ridge on the opposite side, and two tranform faults on the adjacent edges. We vary the geometry of the plate, both in terms of the length of the subducting trench, and the distance from the trench to the ridge, and vary the plate velocity.

We will report the slab behaviour in terms of plate geometry, mantle properties, and plate velocity, focussing on the evolution of downwellings, upwellings and other mantle structures in response to mantle circulation models driven solely by a single plate at the surface.

How to cite: Plimmer, A., Davies, H., and Panton, J.: Slab dynamics in the mantle: a back-to-basics approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6247, https://doi.org/10.5194/egusphere-egu24-6247, 2024.

X2.90
|
EGU24-6549
|
ECS
Taiwo Ojo, Joshua Guerrero, Chad Fairservice, Pejvak Javaheri, and Julian Lowman

We implement an innovative method of plate identification for the purpose of evaluating plate motion in numerical mantle convection models. Our method utilizes an existing tool,  Automatic Detection Of Plate Tectonics (ADOPT), which applies a tolerance (threshold) algorithm to elevation maps, to detect candidate plate boundaries at the surface of 3-D spherical mantle convection models. The logarithm of the strain-rate field yields a well-defined elevation map where local maxima lineations indicate spreading centres, zones of convergence, transform faults or diffuse deformation zones. For the plates found by ADOPT’s analysis, we determined rotation (Euler) poles implied by the velocities  within  the plate interiors. Subsequently, we examined the velocity field of each model plate for its agreement with rigid motion about the Euler poles.  We apply our method to snapshots taken from three previously published mantle convection calculations that appear to generate plate-like surface behaviour. Self-consistently generated model plates were obtained by combining a highly temperature-dependent viscosity with a yield stress that adds a strain-rate dependence to the viscosity, thus allowing for both intra-plate low strain-rate and weakening along tightly focussed plate boundaries. We generally identify more (and smaller) rigid plates for low yield stress or low threshold. Strong agreement of the surface velocities with rigid-body rotation around Euler poles is found for many of the plates identified; however, some plates also exhibit internal deformation. Regions that show a departure from rigidity can be decomposed into subsets of rigidly moving plates. Thus, the identification of a mantle convection model's maximally rigid plate surface may require plate boundary detection at both low and high thresholds. We suggest that as global mantle convection models superficially converge on the generation of plate boundary network similar to those observed with plate tectonics (including transform fault generation), testing for plate rigidity through the determination of Euler poles can serve as a quantitative measure of plate-like surface motion.

How to cite: Ojo, T., Guerrero, J., Fairservice, C., Javaheri, P., and Lowman, J.: Utilizing Euler poles for the evaluation of plate rigidity in numerical mantle convection models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6549, https://doi.org/10.5194/egusphere-egu24-6549, 2024.

X2.91
|
EGU24-13826
|
ECS
Isadora Page, Ben R. Mather, Nicole Januszczak, Michele Anthony, and R. Dietmar Muller

Nickel-Copper (Ni-Cu) sulphide deposits are a diverse class of deposits, formed during the cooling and crystallisation of metal-rich mafic to ultramafic magmas. Despite sharing several key ore-forming processes, many of these deposits form in contrasting geologic environments and periods. The objective of this research project is to investigate the spatial and temporal distribution of Ni-Cu sulphide deposits in a mantle convection and plate tectonic context, and to explore the influence of different mantle and tectonic parameters on their origins and occurrence. We first determine the location of these deposits in relation to relevant geologic and tectonic features through time, including subduction zones, large igneous provinces (LIPs), and mantle plumes. Using a 1 billion year plate model we extract key parameters relating to subduction, as well as the spatio-temporal distribution of LIPs through time. Employing an associated geodynamic model, we identify model mantle plumes and quantify their key properties. Preliminary findings indicate that certain mantle plumes associated with deposits exhibit increased plume flux in the upper mantle preceding deposit formation, and that many deposits are spatially associated with LIPs throughout their formation history. For several deposits located in convergent margin settings, we have identified a notable spike in subduction volume and convergence rate during a 50-100 million year period prior to the onset of mineralisation. While the angle of the subducting slab is highly variable throughout the evolution of these deposits, several deposits are associated with a distinct steepening of the subducting plate in the lead-up to deposit formation. The findings of this study aim to contribute new insights into the dynamic processes governing the genesis of magmatic Ni-Cu sulphide deposits. These insights aid in our understanding of the interplay between mantle dynamics, plate tectonics, and deposit formation, and hold implications for future critical mineral exploration.

How to cite: Page, I., Mather, B. R., Januszczak, N., Anthony, M., and Muller, R. D.: Understanding Ni-Cu Sulphide Deposits in a Plate Tectonic and Mantle Convection Context, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13826, https://doi.org/10.5194/egusphere-egu24-13826, 2024.

X2.92
|
EGU24-10967
|
ECS
Michaël Pons, Stephan V. Sobolev, Charitra Jain, and Elodie Kendall

The evolution of modern plate tectonics is described by the Wilson cycle, which portrays the dynamics of the supercontinental cycle through the interaction of the oceanic plate with the continental plate over periods of hundreds of millions of years. This cycle is characterized by a phase of supercontinent assembly and enhanced orogenic collision, followed by a phase of supercontinent fragmentation and dispersal, as shown by the geological record. The dynamics of the Wilson cycle is intrinsically linked to mantle convection and subduction dynamics. While the assembly phase appears to follow a degree-2 mantle convection style, the mechanism responsible for supercontinent fragmentation is still debated. We hypothesize that the dispersal phase is mostly governed by trench roll-back from subductions and mantle plumes. To test this hypothesis, we have built a series of 2D and 3D geodynamic models of the Earth on a global scale using the ASPECT code. We have tested different scenarios in which we prescribe the distribution of the supercontinent Rodinia at 1Ga or Pangea at 250 Ma and let the models evolve self-consistently.  In some model variants, the strength of the supercontinent and that of the surrounding oceanic area is changed. We will present our preliminary results and discuss the dynamics of continental dispersal and its link to subduction and mantle dynamics. In particular, 3D models will demonstrate how regional plume-induced retreating subduction zones evolve into a global network of subduction zones and tectonics plate boundaries which ultimately leads to the break-up of the supercontinent.

How to cite: Pons, M., V. Sobolev, S., Jain, C., and Kendall, E.: From plumes to subduction network formation and supercontinent break-up, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10967, https://doi.org/10.5194/egusphere-egu24-10967, 2024.

X2.93
|
EGU24-8432
|
ECS
Jie Zhang and Jiashun Hu

Plate tectonics plays a pivotal role in shaping the Earth's surface and is intricately linked to internal processes, including the subduction of cold slabs and the ascent of hot mantle plumes. Statistical analyses have unveiled a strong correlation between the distribution of large igneous provinces (LIPs) over the past 320 Ma and two large low-velocity provinces (LLVPs) beneath Africa and the Pacific Ocean. Consequently, hypotheses have emerged suggesting the long-term stability of these LLVPs. However, numerical modeling challenges this notion, suggesting that these basal mantle structures are mobile. To resolve these debates, we attempt to study these basal mantle structures from the evolution of intermediate-scale thermochemical anomalies. We report such an intermediate-scale thermochemical anomaly beneath the NW Pacific Ocean based on existing tomographic models and use paleogeographically constrained numerical models to study its evolution. Considering different plate configurations in North Pacific, our models consistently show that this anomaly was separated from the Perm anomaly by the subduction of the Izanagi slab in the Cretaceous. After the separation, it generated a mantle plume, inducing an oceanic plateau that got subducted beneath Kamchatka in Eocene. This scenario is consistent with multiple lines of evidence, including the seismic anomaly in the lower mantle, a seismically detected megameter-scale reflector that coincides with the subducted oceanic plateau and changes in Pacific Plate motion that correlated with the Eocene trench-plateau collision. We propose that intermediate-scale low velocity structures constantly undergo segregation and coalescing, and are sources of plumes that lie outside the two major LLVPs. Merging of the reported anomaly with the Pacific LLVP suggests the latter is still under assembly.

How to cite: Zhang, J. and Hu, J.: Segregation of thermochemical anomaly and associated deep mantle plume outside the large low-velocity provinces, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8432, https://doi.org/10.5194/egusphere-egu24-8432, 2024.

X2.94
|
EGU24-6630
Ya-Nan Shi and Jason Morgan

Delamination of continental lithospheric mantle is now well-recorded beneath several continents. However, the fate of delaminated continental lithosphere has been rarely noted, unlike subducted slabs that are reasonably well imaged in the upper and mid mantle. Beneath former Gondwana, recent seismic tomographic models indicate the presence of at least 5  horizontal fast-wavespeed anomalies at ~600 km depths that do not appear to be related to slab subduction, including fast structures in locations consistent with delamination associated with the Paraná Flood Basalt event at ~134 Ma and the Deccan Traps event at ~66 Ma. These fast-wavespeed anomalies often lie above broad slow seismic wavespeed trunks at 500-700 km depths beneath former Gondwana, with the slow wavespeed anomalies branching around them. Numerical experiments indicate that delaminated lithosphere tends to stagnate in the transition zone above a mantle plume where it shapes subsequent plume upwelling. For hot plumes, the melt volume generated during plume-influenced delamination can easily reach ~2-4×106 km3, consistent with the basalt eruption volume at the Deccan Traps. This seismic and numerical evidence suggests that observed high wavespeed mid-mantle anomalies beneath the locations of former flood basalts are delaminated fragments of former continental lithosphere, and that lithospheric delamination events in the presence of subcontinental plumes induced several of the continental flood basalts associated with the multiple breakup stages of Gondwanaland. Continued upwelling in these plumes can also have entrained subcontinental lithosphere in the mid-mantle to bring its distinctive geochemical signal to the modern mid-ocean spreading centers that surround southern and western Africa.

How to cite: Shi, Y.-N. and Morgan, J.: Gondwanan Flood Basalts Linked Seismically to Plume-Induced Lithosphere Instability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6630, https://doi.org/10.5194/egusphere-egu24-6630, 2024.

X2.95
|
EGU24-18296
|
ECS
Raffaele Bonadio, Sergei Lebedev, David Chew, Yihe Xu, and Javier Fullea

The extensive Paleocene magmatism of the British and Irish Tertiary Igneous Province (BITIP)—a part of the North Atlantic Igneous Province (NAIP)—was accompanied by significant uplift and exhumation, as evidenced by geothermochronological and other data. The enigmatic origins of the volcanism and uplift are debated. The Iceland Hotspot reached the North Atlantic at that time and could probably supply anomalously hot asthenospheric material to the volcanic areas of NAIP, but they were scattered over a broad area thousands of kilometres across. This motivates alternative, non-plume explanations.

Here, we obtain a map of the lithosphere-asthenosphere boundary (LAB) depth in the region using thermodynamic inversion of seismic surface-wave data. Love and Rayleigh phase velocity maps in broad period ranges were computed using optimal resolution tomography with direct model error estimation and supplied the data for the inversion.

Our results reveal a consistently thinner-than-average lithosphere beneath the Irish Sea and surroundings, encompassing northern Ireland and western Scotland and Wales. The Paleocene uplift, BITIP volcanism and crustal underplating are all located in the same regions, which are underlain, consistently, by anomalously thin lithosphere.

The previously unknown lithospheric anomalies we discover yield a new insight into how the Iceland Plume could cause volcanism scattered over the vast NAIP. Plume material is likely to have flowed into pre-existing areas of thin continental lithosphere, whose thickness was then reduced further by the erosion by the hot asthenosphere. The thinning of the lithosphere and the presence of hot asthenosphere beneath it can account for the uplift, volcanism and crustal underplating. The localisation of the plume material in scattered thin-lithosphere areas, such as the circum-Irish-Sea region, can explain the wide scatter of the volcanic fields of NAIP.

How to cite: Bonadio, R., Lebedev, S., Chew, D., Xu, Y., and Fullea, J.: How could a single Iceland Plume produce the widely scattered North Atlantic Igneous Province volcanism? New clues from Britain and Ireland., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18296, https://doi.org/10.5194/egusphere-egu24-18296, 2024.

X2.96
|
EGU24-2317
Gabi Laske, Grace Atkisson, Sujania Talavera Soza, John Collins, and Donna Blackman

The OHANA experiment comprises a 15-month deployment of 25 broadband ocean bottom seismometers (OBSs) in the northeast Pacific Ocean, about halfway between Hawaii and the North American west coast. The primary objective of this project is to explore the crust, lithosphere and asthenosphere in a 600~km wide region west of the Moonless Mountains, covering mainly 40-to-50 Myr old Pacific lithosphere. A fundamental question to be addressed is whether this particular area has the signature of a typical oceanic lithosphere that has a normal plate cooling history. Alternatively, we seek evidence for a previously proposed reheating process, e.g. resulting from small-scale shallow-mantle convection. 

The new data enhance seismic imaging in a regional as well as in a global context. Regionally, short-period ambient noise and long-period earthquake-derived Rayleigh wave dispersion provide the centerpiece for imaging the crust and upper mantle. In  a top-down approach,
we start with the assembly and analysis of ambient-noise cross-correlation functions between 5 and 25 s. We present an initial assessment of high signal-to-noise quality cross-correlation functions. We derive path-averaged dispersion curves for the fundamental mode and present tomographic images from initial inversions. 

Furthermore, our cross-correlation functions contain prominent waveforms from overtones that can help improve resolution as a function of depth.

How to cite: Laske, G., Atkisson, G., Talavera Soza, S., Collins, J., and Blackman, D.: Rayleigh-wave Ambient Noise Investigation for the OHANA Experiment in the NE Pacific, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2317, https://doi.org/10.5194/egusphere-egu24-2317, 2024.

X2.97
|
EGU24-10288
Adrien Vezinet, Blas Barbera, Alexander V. Sobolev, Valentina G. Batanova, Charbel Kazzy, and Aleksandr V. Chugunov

Melt inclusions hosted in highly magnesian olivine crystals have proven invaluable for probing the composition of the mantle through time since their geochemical signature is reflecting that of parental melt. Additionally, the geochemical study of melt inclusions has shown to be more suited to identify the heterogeneity in the magma from which they crystallized, particularly the chemically depleted domains [1, 2]. Here, we will present new major, minor & trace elements, H2O contents and Sr-isotope signature of more than 300 olivine-hosted naturally quenched melt inclusions from Pu’u Wahi (910 yr-old) and Puʻu Mahana (ca. 50 kyr-old), two ash cones associated with Mauna Loa, the largest shield volcano of the Hawai’ian seamount chain. In order to have a high degree of confidence in the geochemical proxies, Sr-isotope and trace elements analyses were conducted through laser ablation split stream (LASS) protocol on top of EPMA and Raman (for H2O contents) analytical spots. Preliminary results in our new set of inclusions show the presence of high (Sr/Ce)N inclusions, previously interpreted as indicating either gabbro influence in the source of the plume [3] or interactions between plagioclase-rich cumulates and percolating mantle-derived melts [4]. Further, “ultra-depleted melts”, UDM, indicated by K2O contents < 0.1 wt.% identified in [1], have also been re-identified in this new set of inclusions (not analyzed for Sr-isotope yet). 87Sr/86Sr of non-UDM inclusions ranges from 0.70361±0.00025 to 0.70427±0.00025, i.e. analogous to the most recent TIMS values [4, 5]. Additional LASS analyses will be conducted before the meeting. The full set of analyses will be confronted to published results on the same volcano [1, 3-6] and integrated in a larger framework of interactions between mantle plume and consequences for plate tectonic.

References:

  • Sobolev, A.V., et al., Nature, 2011. 476(7361).
  • Stracke, A., et al., Nature Geoscience, 2019. 12(10).
  • Sobolev, A.V., et al., Nature, 2000. 404(6781).
  • Anderson, O.E., et al., Geochemistry, Geophysics, Geosystems, 2021. 22(4).
  • Reinhard, A., et al., Chemical Geology, 2018. 495.
  • Sobolev, A.V., et al., Nature, 2005. 434(7033).

How to cite: Vezinet, A., Barbera, B., Sobolev, A. V., Batanova, V. G., Kazzy, C., and Chugunov, A. V.: Heterogeneous mantle source of Mauna Loa volcano (Hawai’ian plume) revealed by Sr-isotope and trace elements signatures of olivine-hosted melt inclusions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10288, https://doi.org/10.5194/egusphere-egu24-10288, 2024.

X2.98
|
EGU24-16479
Jason P. Morgan and W. Jason Morgan

Chemical diffusion in the mantle has typically been viewed to play a negligible role in geodynamic processes.  However, diffusion rates for water (H) and helium (He) are large enough that they lead to observable differences between pyroxenite-rich melting associated with ocean island volcanism (OIB) and more peridotite-rich melting associated with mid-ocean ridge basalts (MORB). Laboratory measurements of diffusion rates of H and He at ambient mantle temperatures in olivine are of order ~10 km/1.7Gyr for He and ~250 km/1.7 Gyr for H. If the mantle is an interlayered mixture of recycled oceanic basalts and sediments surrounded by a much larger volume of residual peridotites, then chemical diffusion can shape the mantle in two important ways.  Hydrogen will tend to migrate from peridotites into adjacent pyroxenites, because clinopyroxene has a much stronger affinity for water than the olivine and orthopyroxene that form the bulk of mantle peridotites. Therefore pyroxenite lithologies will typically have twice or more the water content of their surrounding damp peridotites. This will strongly favor the enhanced melting of pyroxenites that is now mostly agreed to be a common feature of the OIB source. Radiogenic 4He will have the opposite behaviour — it will tend to migrate from where it is produced in recycled incompatible-element-rich (e.g. U and Th-rich) pyroxenites into nearby, larger volume fraction, but U+Th-poorer peridotites, while the radioisotopes of Ar and Ne that are also produced by the decay of the incompatible elements K, U, and Th will diffuse much less, and thus remain within their original pyroxenite source.  This effect leads to lower 4He/21Ne and 4He/40Ar ratios in OIB in comparison to the predicted values based on the mantle’s bulk geochemistry, and complementary higher 4He/21Ne and 4He/40Ar ratios in the MORB source that is formed by the plume-fed asthenospheric residues to OIB melt extraction at plumes.

 The recent observation of a 150-km-deep positive shear velocity gradient (PVG) beneath non-cratonic lithosphere (Hua et al., 2023) is further evidence for the initiation of pyroxenitic melting at this depth within the asthenosphere. It also implies that lateral temperature variations at this depth are quite small, of order +/- 75°C. This near uniformity of temperatures near both mantle plumes and mid-ocean ridges is, in turn, strong evidence in favor of the hypothesis that the asthenosphere is fed by mantle plumes. We propose that two filtering effects occur as plumes feed the asthenosphere, removing both the hottest and coldest parts of upwelling plume material. First, the peridotite fraction in the hottest part of upwelling plume material melts enough for it to dehydrate, thereby transforming this fraction into a more viscous and buoyant hotspot swell root that moves with the overlying plate, not as asthenosphere. Second, since plume material is warmer than average mantle, it is more buoyant, creating a natural density filter that prevents any cooler underlying mantle from upwelling through it. These rheological and density filters make the asthenosphere sampled by melting at mid-ocean ridges have a more uniform temperature than its typical underlying mantle.

How to cite: Morgan, J. P. and Morgan, W. J.: H, He, and seismic evidence for a bilithologic plume-fed asthenosphere , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16479, https://doi.org/10.5194/egusphere-egu24-16479, 2024.

X2.99
|
EGU24-10507
|
ECS
Jia Shao and Jason Morgan

Pyroxenites are generated by the subduction of sediments and oceanic basalts into the deep mantle. These rocks, together with the larger volume fraction of their surrounding mantle peridotites make up a lithologically heterogeneous two-component mantle, sometimes called a ‘marble-cake’ or ‘plum-pudding’ mantle. Geochemical and petrological observations have shown that pyroxenites play a significant role in the genesis of oceanic island basalts (OIB). However, the consequences of preferential pyroxenite melting on bulk mantle properties have yet to be systematically explored. For example, how does the plume melting process modify a plum-pudding mantle’s bulk density and viscosity? This question could be very important, in particular if the asthenosphere is formed by material from upwelling, melting plumes.

To explore the above questions, we use the thermodynamic software Perple_X to determine densities for different degrees of depleted (i.e. partially melted) peridotites and pyroxenites. We then include these relations into a one-dimensional numerical simulation code for the upwelling and pressure-release melting of a potentially wet multi-component mantle. We investigate the density changes associated with the melting of this idealized mantle’s pyroxenites and peridodites, and also the viscosity change by assuming that the reference viscosity of pyroxenite is 10-100 times that of dry peridotite at similar P-T conditions, since the peridotite’s olivines are the weakest large volume-fraction minerals in the upper mantle. We have explored the effects of mantle temperature, initial water contents, initial fractions of pyroxenites and peridotite, peridotite solidi, and the thickness of the overlying lithosphere which will affect the depth-interval of upwelling and melting. Preliminary results show that significant density and viscosity changes should take place during plume upwelling and melting. ~30% partial melting of pyroxenite would lead to a net bulk density reduction of 0.3%, comparable to the thermal buoyancy associated with a ~100° temperature increase. As long as the surrounding peridotites do not melt, the mixture’s aggregate viscosity will remain that of wet peridotitic mantle; after the peridotites have melted a percent or so, the aggregate viscosity will increase 10-100-fold to that of dry peridotite. This could lead to the formation of a 10-100x asthenospheric viscosity restitic hotspot swell root. Eventual peridotitic melting will reduce the density of the more depleted peridotites relative to fertile peridotite as originally noted by Oxburgh and Parmentier (1977), but to a lesser degree than the density reduction associated with the preferential removal of pyroxenites by their partial melting. A dynamical consequence is that the asthenosphere is likely to be strongly stratified by density, with its most pyroxenite-depleted materials likely to rise to form a layer along the base of the overlying oceanic lithosphere. 

How to cite: Shao, J. and Morgan, J.: The density and viscosity of a bilithologic plume-fed asthenosphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10507, https://doi.org/10.5194/egusphere-egu24-10507, 2024.

X2.100
|
EGU24-18845
|
ECS
Martina Monaco

The X-discontinuity at 300 km beneath the Hawaiian hotspot has been hypothesized to require at least 40% basalt, a figure that would far exceed the plume's buoyancy and thus be irreconcilable with initial entrainments.
We had previously explored the potential for large basalt accumulations to form over time by simulating a section of the plume conduit, with known quantities of basaltic material flowing in as discrete heterogeneities. For entrainments of 10-20%, we had estimated average accumulations of 20-25% at ~300 km depth.
While this simplified setting recreated segregation of the denser material, it did not feature a realistic plume. On the other hand, employing mechanical mixture compositions hamper quantitative analyses of the recycled basalt.

I have overcome this issue by developing a novel implementation to the ASPECT code.
My advancement features a mechanical mixture composition (82% harzburgite — 18% basalt) for both the background mantle and the plume. The recycled material is then added to the self-consistent rising plume in the form of compositionally distinct basaltic heterogeneities. By combining these two approaches, I was able to successfully reproduce and quantify material segregation while keeping an accurate plume composition.

Preliminary results, conducted in a 2000 km * 1000 km 2D domain, with entrainments of 10-20%, and a maximum resolution of 0.98 km in the heterogeneities, show average basalt accumulations of 20-22% around 300 km depth. Occasional, transient peaks at 31% and 35% can be observed for plumes incorporating 15% basalt. Over the model time (20 Ma), the denser material tends to sink between 360-660 km depth, generating large average accumulations of 35-40%. 

This new strategy not only opens promising scenarios by overcoming long-standing model limitations, but also reinforces the potential for mantle plumes to accumulate more denser material than classically thought, shedding further light on the controversial link between the X-discontinuity and the Hawaiian plume activity.

How to cite: Monaco, M.: A Novel Implementation to Simulate Basalt Segregation in the Hawaiian Mantle Plume Overcomes Model Limitations and Elucidates the Origin of the X-discontinuity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18845, https://doi.org/10.5194/egusphere-egu24-18845, 2024.

X2.101
|
EGU24-13786
|
ECS
Xianyu Li, Jia Shao, Guanzhi Wang, Yanan Shi, and Jason Morgan

Laboratory and numerical experiments and boundary layer analysis of the entrainment of buoyant asthenosphere by subducting oceanic lithosphere (cf. Morgan et al., Terra Nova, 2007) implies that slab entrainment is likely to be relatively inefficient at removing a buoyant and lower viscosity asthenosphere layer. Such asthenosphere would instead be mostly removed by accretion into overlying oceanic lithosphere, both at mid-ocean ridges where a ~60-km compositional lithosphere forms due to the melt-induced dehydration of upwelling peridotitic mantle, and later with the thermal growth of  overlying oceanic lithosphere. When an oceanic plate subducts, the lower (hot) side of a subducting slab entrains a 10– 30 km-thick downdragged layer, whose thickness depends upon the subduction rate and the density contrast and viscosity of the asthenosphere, while the upper (cold) side of the slab may entrain as much by thermal ‘freezing’ onto the slab as by mechanical downdragging.  

Here we use 2-D numerical experiments to investigate the dynamics of entrainment and counterflow at subduction zones. We explore situations with both stable subduction geometries and slab rollback. Due to its low viscosity, a plume-fed asthenosphere is particularly likely to be stratified in its internal density, with variable amounts of plume melt-extraction leading to variable pyroxenite fractions and associated vertical density stratification within a bilithologic ~80-90% peridotite, ~10-20% pyroxenite asthenosphere. While this type of vertical density stratification appears to lead to similar predicted entrainment by subducting slabs, it will generate more complex patterns of asthenospheric counterflow that involve shallower and time-dependent counterflow behind the subducting slab.

How to cite: Li, X., Shao, J., Wang, G., Shi, Y., and Morgan, J.: Counterflow and entrainment within a buoyant plume-fed asthenosphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13786, https://doi.org/10.5194/egusphere-egu24-13786, 2024.

X2.102
|
EGU24-13939
|
ECS
|
Guanzhi Wang, Jason P. Morgan, and Paola Vannucchi

The plate ‘interface’ at subduction zones has often been idealized as a single fault with ‘asperities’, however there is increasing evidence that plate boundary motions typically occur across a ~100-1000m channel or shear zone. Here we investigate the dynamics of slip in a mechanically heterogeneous plate boundary shear zone, and will typically use periodic boundary conditions to model the channel at a ~m-scale.  In contrast to most previous numerical studies, we imagine that this shear zone is embedded within finite strength wall-rock associated with the downgoing and overriding plates that themselves are capable of subduction-related deformation, for example during bend-faulting of the lower-plate or a forearc deformation event. We first look at how stress-concentrations can form by the clogging of strong blocks in a channel with a weaker matrix. We find that the strength of the surrounding wall-rock will play a key role in the channel’s response to a clogging event. In general, a clogging event can be mitigated by failure of surrounding relatively weak wallrock along the edges of a subduction channel in the conceptual process put forward by von Huene et al. (2004) to drive basal erosion of the forearc. We also consider cases where metamorphic transitions have led to the existence of weaker blocks within a stronger matrix. In this case, frequent tremor-like failure of the weak blocks can coexist with rarer earthquake failure of the stronger surrounding matrix.  Finally we explore the mechanical effects of channel widening and narrowing events that will invariably lead to a component of local pressure-driven flow within a subduction shear channel. Numerical snapshots and videos are used to visualize these potential modes of subduction shear zone deformation.

How to cite: Wang, G., P. Morgan, J., and Vannucchi, P.: Numerical exploration of the dynamics of the subduction plate boundary channel , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13939, https://doi.org/10.5194/egusphere-egu24-13939, 2024.

X2.103
|
EGU24-14528
Jialei Qiu, Nadia Padavini, Paola Vannucchi, and Jason Morgan

Both dynamic topography and seismic tomography have played crucial roles in providing invaluable insights into the Earth's interior structure and geological processes. Here we explore to what degree dynamic topography within ocean and back-arc basins can be correlated with the upper mantle seismic structure that has been imaged in recent high-resolution global models.

To explore the global ocean dynamic topography associated with subsurface mantle convection, we need to remove the influences of known contributing factors to seafloor relief such as the cooling of the ocean floor and the thickness of the ocean crust and sediments. We developed a series of scripts in PyGMT and MATLAB to do this, based on seafloor ages in GPLATES and sediment/crust information in CRUST1.0. With these corrections for near-surface structure, we obtained global average residual-depth values that serve as a basis for analyzing global subsurface structures linked to the asthenosphere and upper mantle, which we then compare to the vertically averaged shear-wave seismic structure above the transition zone. Our preliminary study highlights that the significant ~km-difference in dynamic topography between the Philippine back-arc basin and the Lau-Tonga backarc appear to be linked to a major difference in asthenosphere thickness and density beneath these two regions.

How to cite: Qiu, J., Padavini, N., Vannucchi, P., and Morgan, J.: Using Dynamic Topography and Seismic Tomography to explore the compensation of seafloor in oceanic and back-arc basins, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14528, https://doi.org/10.5194/egusphere-egu24-14528, 2024.

X2.104
|
EGU24-14578
Hotter Mantle Precludes Supercontinent Assembly in Pacific Hemisphere
(withdrawn)
Ross Mitchell and Luc Doucet
X2.105
|
EGU24-19459
|
ECS
Raghu Ram Gudipati, Marta Pérez-Gussinyé, and Javier García-Pintado

Classic models of continental rifting predict that after continental break-up, the extended lithosphere returns to its original thermal state (McKenzie, 1978). At this time, the heat-flow should decrease from the proximal margin sectors, where the radiogenic crust is still relatively thick, towards its distal sectors, where the crust has extensively thin and the thermal lithosphere thickness approximates that of the adjacent untinned continental lithosphere. This should occur after approximately ~50 Myr for 120 km thick continental lithosphere (McKenzie, 1978). Although, good quality heat flow data is very scarce along margins, some of them, such as the Voring basin, show instead increasing heat flow towards the distal margin sectors ~60 Myr after break-up (Cunha et al., 2021). Recent numerical models have suggested, instead, that the lithosphere under the hyper-extended continental margins, does actually not return towards its original thermal thickness, instead it acquires a thickness which is similar to that of the adjacent plate, resulting in higher heat-flow towards the distal margins at ~80-100 Myr after break-up (Perez-Gussinye et al., 2023). In those models, the delay in thermal relaxation under the hyper-extended margins is caused by small-scale convections cells, a process which also prevents the oceanic lithosphere to infinitely cool and is responsible for the flattening of the oceanic bathymetry at old ages. Interestingly, the models show that the delay in thermal relaxation under both the hyper-extended rifted margins and the old oceanic crust increases with decreasing rifting and spreading velocity, such that is most obvious in ultra-slow margins and adjacent oceanic basins (Perez-Gussinye et al., 2023). Here we use updated 2D numerical models which include the thermal consequences of serpentinisation, melting and melt emplacement to understand the thermal evolution of oceanic plates and compare the resulting plate structure, heat-flow and bathymetry with the observations from seismic LAB structure, and global heat-flow and bathymetry databases.

 

References

Cunha, T.A., Rasmussen, H., Villinger, H. and Akinwumiju, A.A., 2021. Burial and Heat Flux Modelling along a Southern Vøring Basin Transect: Implications for the Petroleum Systems and Thermal Regimes in the Deep Mid-Norwegian Sea. Geosciences, 11(5), p.190.

McKenzie, D., 1978. Some remarks on the development of sedimentary basins. Earth and Planetary science letters, 40(1), pp.25-32.

Pérez-Gussinyé, M., Xin, Y., Cunha, T., Ram, R., Andrés-Martínez, M., Dong, D. and García-Pintado, J., 2024. Synrift and postrift thermal evolution of rifted margins: a re-evaluation of classic models of extension. Geological Society, London, Special Publications, 547(1), pp.SP547-2023.

How to cite: Gudipati, R. R., Pérez-Gussinyé, M., and García-Pintado, J.: Influence of small-scale convection on the cooling of oceanic lithosphere at slow and fast spreading ridges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19459, https://doi.org/10.5194/egusphere-egu24-19459, 2024.

X2.106
|
EGU24-19837
Anke M. Friedrich

Geodynamicists have long proposed that mantle convection creates dynamic topography — a long-wavelength, low-amplitude signal extending beyond plate tectonics. This predicts transient vertical Earth surface movement of 1–2 km across thousands of horizontal kilometers at any location, including continental interiors. Despite these claims, experts working on local observations, using the multitude of high-resolution geological, sedimentological, and geomorphological data, face challenges in finding clear evidence to unequivocally support dynamic models of whole mantle convection, including the plume mode. Moreover, regional-scale stratigraphic techniques, such as sequence stratigraphy, which enabled hydrocarbon exploration, invoke unconformities on multiple scales but, from their far-field perspective, render correlation to distinct geodynamic events difficult.

To circumvent this scaling and correlation problem, I propose to reverse the stratigraphic perspective to an outwards-directed view. This approach requires a theoretical geodynamic framework and the identification of tectonic events (center, near field), such as magmatic arcs, flood basalts, or uplifted domes, followed by outward-directed geological mapping of regional-scale stratigraphic unconformities —predicted by theory— to distal regions. This approach is analogous to the way in which paleoseismologists examine so-called event horizons, i.e., unconformities in the stratigraphic record adjacent to fault scarps that preserve a record of the Earth's surface at the time of earthquake rupture.

This event-based stratigraphic mapping method (EVENT-STRAT) enables analysis of geological events on geological maps compiled at regional to continental scales. The technique connects local work into a continent-scale framework, allowing identification of transient patterns related to dynamic mantle-derived events. The EVENT-STRAT mapping method is designed to visualize geological effects resulting from both the plate and the plume mode of mantle convection. The toolbox consists of the hiatus mapping method (Friedrich 2019, Geological Magazine) and the event-based stratigraphic framework mapping (e.g., Friedrich et al. 2018, Gondwana Research). The upcoming EVENT-STRAT mapping method involves multiple polygonal stacking to analyze various stratigraphic event horizons, such as hiatus surfaces and unconformities. The most significant current challenge is to add the high-precision stratigraphic data compiled on local chronostratigraphic charts to continent-scale geological maps. This effort requires the attention of geological surveys on international scales seeking to compile theory-based geodynamic-stratigraphic parameters on the next generation of global and continent-scale geological maps.

How to cite: Friedrich, A. M.: Geodynamic Stratigraphy — Defining the Need for Mapping Strategies to link Models of Mantle Dynamics to Surface Processes on Geological Scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19837, https://doi.org/10.5194/egusphere-egu24-19837, 2024.

X2.107
|
EGU24-1934
|
ECS
Liang Liu, Lijun Liu, Jason Morgan, Yi-Gang Xu, and Ling Chen

            The type of lithosphere subducted between India and Tibet since the Paleocene remains controversial; it has been suggested to be either entirely continental, oceanic, or a mixture of the two. As the subduction history of this lost lithosphere strongly shaped Tibetan intraplate tectonism, we attempt to further constrain its nature and density structure with numerical models that aim to reproduce the observed history of magmatism and crustal thickening in addition to present-day plateau properties between 83˚E and 88˚E. By matching time-evolving geological patterns, here we show that Tibetan tectonism away from the Himalayan syntaxis is consistent with the initial indentation of a craton-like terrane at 55±5 Ma, followed by a buoyant tectonic plate with a thin crust, e.g., a broad continental margin (Himalandia). This new geodynamic scenario can explain the seemingly contradictory observations that had led to competing hypotheses like the subduction of Greater India versus largely oceanic subduction prior to Indian indentation.

How to cite: Liu, L., Liu, L., Morgan, J., Xu, Y.-G., and Chen, L.: The hypothesis of a lost Cenozoic “Himalandia” between India and Asia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1934, https://doi.org/10.5194/egusphere-egu24-1934, 2024.

Posters virtual: Wed, 17 Apr, 14:00–15:45 | vHall X2

Display time: Wed, 17 Apr 08:30–Wed, 17 Apr 18:00
Chairpersons: Jason Morgan, Ya-Nan Shi, João C. Duarte
vX2.4
|
EGU24-9647
Nirjhar Mullick, Vivek Kumar, Gokul Saha, Shyam S. Rai, and Thomas Bodin

Mantle plumes play major role in modifying the continental lithosphere producing rifts and massive amounts of basaltic volcanism as the anomalously hot mantle undergoes decompressive melting. If conditions are favourable the rift may widen and a new ocean is formed. During the break up of Eastern Gondwana at ~ 130 Ma, the Kerguelen mantle plume influenced the separation of India from Antarctic and Australian plates and generation of the Eastern Indian Ocean. Eastern India-Bangladesh region (83-94ºE, 21-26ºN) carries imprints of the plume activity in the form of the Rajmahal and Sylhet traps and their subsurface expression in Bengal basin and extensive lamproytes. Existing geophysical studies of the region are mainly crustal scale and do not explicitly refer to the Kerguelen plume activity providing geophysical evidence for the same. We present here lithospheric shear velocity structure of the region up to a depth of ~ 175 km by trans-dimensional Baysian inversion of Rayleigh group velocity dispersion data (7-100s at 1º X 1º resolution). Using the same, we investigate the influence of the Kerguelen plume on the lithosphere of the Eastern India-Bangladesh region that comprises the Eastern India craton, the Bengal basin, the Bhrahmaputra basin, Bangladesh and the Shillong- Mikir plateau.

How to cite: Mullick, N., Kumar, V., Saha, G., Rai, S. S., and Bodin, T.: Influence of the Kerguelen hotspot on eastern Indian lithosphere by trans-dimensional Bayesian inversion of Rayleigh wave dispersion data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9647, https://doi.org/10.5194/egusphere-egu24-9647, 2024.