EGU24-10548, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-10548
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Implementation of UNESCO’s Recommendation on Open Science through Outcrop Modelling in UNESCO Global Geoparks

Antonio Abreu, Rania Sabo, Kristof Vandenberghe, and Eunhee Lee
Antonio Abreu et al.
  • UNESCO, Division of Ecological and Earth Sciences, Paris, France (a.abreu@unesco.org)

Abstract

In 2015, UNESCO adopted its third designation (UNESCO Global Geoparks) to promote the conservation, education, and sustainable development of Earth's geological features, aligning with one of its mandates – geoscience. In a significant development in 2021, UNESCO adopted the Recommendation on Open Science, the first international standard setting instrument on open science. This sparked a growing interest in the potential availability of geological data from Geoparks through open data sources.

Geoparks face different challenges that demand an inclusive solution, and three-dimensional (3D) outcrop modelling emerges as a possible option for some of the issues, while allowing for the implementation of the UNESCO Recommendation on Open Science:

  • It can assist in the conservation and sustainable management of geological resources, through providing an open-source platform for informed decision-making.
  • Addressing educational challenges, 3D models become interactive tools for virtual field trips, extending the reach of UNESCO Global Geoparks to a broader audience.
  • For geotourism, outcrop modelling enhances promotional efforts by showcasing unique geological features, attracting, and retaining visitors.
  • These models offer detailed insights into geological structures, aiding risk management application via proactive mitigation of hazards.
  • 3D modelling overcomes accessibility limitations by enabling virtual exploration of otherwise hard-to-reach locations, fostering a more inclusive understanding of geological heritage.
  • The ease of sharing these models fosters collaboration among geologists and researchers, contributing to a collective knowledge base about geological formations located within UNESCO Global Geoparks.

Developing 3D outcrop modelling in Geoparks will require collaboration with a specialized organisation. Due to its proficient acumen in this domain, Deep-time Digital Earth (DDE) emerges as a compelling collaborator in this project. Working with DDE could allow the preparation of a digital inventory of interesting geological features and land/seascapes for a particular under-represented region, such as Africa. The implementation methodology is set to take place over a few phases, piloting selected UNESCO Global Geoparks. The first phase will include the identification of which UNESCO Global Geoparks are already implementing the technology and what is the interest of Geoparks in using this technology.

Overall, it is expected that 3D outcrop modelling will be instrumental in overcoming various challenges, making Geoparks more accessible, engaging, and sustainable.

How to cite: Abreu, A., Sabo, R., Vandenberghe, K., and Lee, E.: Implementation of UNESCO’s Recommendation on Open Science through Outcrop Modelling in UNESCO Global Geoparks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10548, https://doi.org/10.5194/egusphere-egu24-10548, 2024.