EOS2.4 | Fieldwork - for research and education, from inclusive methods, to utilisation of virtual outcrop models
EDI
Fieldwork - for research and education, from inclusive methods, to utilisation of virtual outcrop models
Co-organized by CR8/GM12
Convener: Florina Roana Schalamon | Co-conveners: Michael Henry Stephenson, Maria Ansine Jensen, Hanting Zhong, Jennifer McKinley
Orals
| Fri, 19 Apr, 16:15–18:00 (CEST)
 
Room 1.15/16
Posters on site
| Attendance Fri, 19 Apr, 10:45–12:30 (CEST) | Display Fri, 19 Apr, 08:30–12:30
 
Hall A
Posters virtual
| Attendance Fri, 19 Apr, 14:00–15:45 (CEST) | Display Fri, 19 Apr, 08:30–18:00
 
vHall A
Orals |
Fri, 16:15
Fri, 10:45
Fri, 14:00
Fieldwork is essential in geoscience, it provides direct and practical experiences, produces valuable data, validates hypotheses, contextualizes findings, encourages discovery, and helps to understand and eventually solve real-world challenges. It is the foundation upon which a significant part of geoscience research and understanding is built. This session is dedicated to exploring the broad range of fieldwork-related topics for education and research. It also provides a safe space to exchange ideas for inclusive fieldwork.
Topics evolve around the organizational and financial aspects of fieldwork, including working with local communities and utilizing and sharing existing infrastructure and expertise both inside and outside of institutions. The session is also open to presenting novel methods for conducting and teaching fieldwork in a safe and welcoming manner. Best practices for managing the field crew, addressing stigmatized subjects (personal hygiene, safety gear, and work attire), and taking into account different needs are a few examples of this.
An additional focus is the utilisation of virtual field models such as digital Outcrop models and their evaluation showcasing features like seamless zooming, rotation, and measurement tools for geological exploration. These models enhance virtual fieldwork for education and professionals, promoting inclusivity and providing access to geological standards and conservation areas. The future focus involves integrating artificial intelligence and machine learning for advanced geological analysis.
This session invites everyone to share their insight about how to conduct scientifically relevant fieldwork in an inclusive, safe, and fun way for every scientist in geoscience.

Orals: Fri, 19 Apr | Room 1.15/16

Chairpersons: Maria Ansine Jensen, Michael Henry Stephenson
16:15–16:20
How to fieldwork? - Planning, conducting, and implementing valuable fieldwork (methods) in geoscience
16:20–16:40
|
EGU24-8989
|
ECS
|
solicited
|
On-site presentation
Amruta Vurakaranam, Emma Robertson, Caleb Walcott, Prem Gill, Mariama C. Dryák-Vallies, Evan Quinter, and Alex Ihle

Fieldwork is a key element in natural sciences, including polar sciences, yet there is a notable lack of representation of minorities in polar field expeditions. Despite the historical involvement of ethnic minorities in such expeditions, their role as contributors and experts in polar scientific knowledge has often been overlooked. In our efforts to promote diversity and inclusivity in the sciences, it is important to reshape fieldwork spaces. This entails providing support to help individuals navigate these spaces, particularly if they are engaging in polar fieldwork for the first time. Establishing resources and support networks is pivotal in this process. We aim to develop a comprehensive fieldwork guide accommodating scientists from underrepresented backgrounds while remaining valuable to a broader audience. Although many fieldwork resources exist, there is an absence of a multi-faceted and inclusive Polar-specific guide. Existing fieldwork guides primarily prioritise physical safety, overlooking crucial aspects such as accessibility, mental health, and insights from underrepresented minority (URM) field scientists. This specialised resource is imperative as exclusionary or negative fieldwork experiences can significantly hinder the retention and career progression of scientists from underrepresented backgrounds. Drawing on our experience as an international volunteer organisation dedicated to promoting inclusivity and accessibility in polar sciences, Polar Impact is uniquely positioned to develop such a fieldwork guide. Our mission focuses on supporting, connecting, and highlighting the experiences of Black, Asian, Indigenous, people of colour, and minority ethnic professionals in the polar research community. It does so by utilising personal experiences from our members and field experts, extensive surveys, and insights from existing guides. Through this expertise, we aim to bridge knowledge and representation gaps, crafting a guide that nurtures a more supportive environment for all scientists in polar research.

How to cite: Vurakaranam, A., Robertson, E., Walcott, C., Gill, P., C. Dryák-Vallies, M., Quinter, E., and Ihle, A.: Polar Impact's Guide to Inclusive Fieldwork Experiences, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8989, https://doi.org/10.5194/egusphere-egu24-8989, 2024.

16:40–16:50
|
EGU24-17802
|
ECS
|
solicited
|
On-site presentation
Mylene Jacquemart, Alice Hill, Alexandra Padilla, Allison Mattheis, Anne Gold, Alyse Thurber, Blair Schneider, Emily Geraghty Ward, Erika Marín-Spiotta, Kristy Tiampo, Mariama Dryák-Vallies, Meredith Hastings, and Ryan Cassotto

Field-based research is integral to many geoscientific studies. Harassment and discrimination in these settings are not new, but widespread recognition of their prevalence, different facets, and the harm they cause has led to demands for cultural change and increased training and preparation for researchers heading into the field. Here, we present a newly developed, widely accessible training program and resource hub for field researchers in preparation for successful and inclusive  field campaigns. This new collaboration, ADVANCEing FieldSafety, builds on the experiences from field safety trainings developed within the University of Colorado, Boulder's FieldSafe project and workplace climate trainings created by the AdvanceGeo Partnership. The ADVANCEing FieldSafety course offers numerous tools designed to create and maintain a positive team culture. The main elements of the training are informed by an intersectional framework and include strategies for creating and implementing codes of conduct, group dynamics and communication tools, allyship training, bystander intervention techniques, traditional and identity-focused risk assessment strategies, and evidence-based practices for inclusive mentorship in the field setting. The course will be offered as a Massive Open Online Course (MOOC) on coursera.org and will become available in 2024, allowing easy access and broad participation. The MOOC will have two pathways:  a Coursera certification and an ADVANCEing FieldSafety certification. The Coursera certificate is obtained by completing the fully online and self-paced course. The ADVANCEing FieldSafety certificate is obtained by completing the course and by participating in facilitated debriefs/reflections related to course topics. The ADVANCEing FieldSafety certification pathway is designed to help field teams meet the new field safety and harassment-mitigation requirements that have recently been implemented, for instance for field campaigns funded by the United States National Science Foundation. Additionally, an easily adaptable  toolkit is also in development such that references and resources can be easily taken into the field. Finally, we are conducting mixed-methods research to assess the effectiveness of the ADVANCEing FieldSafety training for participants and for implementing the management and support structures in field situations offered through the additional toolkit resources. Our goal is to build a stronger geoscience community that works proactively to create norms of inclusive and safe group behavior equipped with tools that promote anti-harassment and early intervention of exclusionary behaviors. 

How to cite: Jacquemart, M., Hill, A., Padilla, A., Mattheis, A., Gold, A., Thurber, A., Schneider, B., Geraghty Ward, E., Marín-Spiotta, E., Tiampo, K., Dryák-Vallies, M., Hastings, M., and Cassotto, R.: ADVANCEing FieldSafety: A new course and toolkit for diverse and inclusive geoscience teams, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17802, https://doi.org/10.5194/egusphere-egu24-17802, 2024.

16:50–17:00
|
EGU24-22115
|
Highlight
|
Virtual presentation
Leila Nour Johnson and Nighat Johnson-Amin

The Polar Regions have been a male preserve from the earliest exploratory journeys, with little or no possibility for women to participate either in exploration or research until quite recent times.

“Antarctica is often associated with images of masculine figures battling against the blizzard. The pervasiveness of heroic white masculine leadership and exploration in Antarctica and, more broadly, in Science, Technology, Engineering, Mathematics, and Medicine (STEMM) research cultures, has meant women have had lesser access to Antarctic research and fieldwork opportunities, with a marked increase since the 1980s. “

(Meredith Nash et al, PLoS One Published online 2019 . doi: 10.1371/journal.pone.0209983)

The hazardous environmental conditions and the proximity with predominantly male colleagues meant that women were initially only accepted on expeditions as spouses or possibly as support at headquarters.

“The situation is very different today, with many women taking on the challenge of research in the Arctic or Antarctic regions. However, many things have not changed and the expeditions remain largely male dominated. The presence and impact of female Antarctic researchers has increased rapidly. In the 1950s most countries did not allow women to work in Antarctica and there were few female Antarctic scientists.”

SCAR Website


While the number of women researchers in the Polar Regions has increased, women remain subject to the pervading culture. The equipment, and clothing available for the extreme conditions remains largely skewed towards male needs and capabilities. Interviews with female researchers has demonstrated that there exists a need to review the equipment used in the field to avoid difficult situations arising from the handling of biological and physiological needs.


The Gorgoneion Project was set up to address the issues raised by the women polar researchers who felt that their performance in the field and their safety was being compromised by clothing related issues. The lack of adapted clothing also prejudiced scientific performance, and createdgeneral unease.


Most of the women who were interviewed for the Gorgoneion Project reported very similar issues, namely:
Lack of adequate insulation in areas specific to the female anatomy.
Lack of dexterity due to wrongly proportioned protective gear, (e.g. gloves or boots).
Issues related to bodily functions and difficulties encountered in obtaining relief in the field.
Weight of clothing not adapted to the physical capabilities of women.
Difficulty to manage temperature control due to integrated layers which prohibit shedding.
Risks to blood circulation due to improper protection of extremities.


The cost of specialized polar gear can easily rise to 20 KEuros per person.

Consequently, it would be very useful to develop a new range of clothing aimed at women researchers. Solutions would
integrate the following:
Know-how from designers who specialize in women’s wear.
Use a sustainable approach employing natural fibres.
Learning from indigenous practices from the Arctic and Patagonia in the handling of cold weather.
Innovating to address the biological needs of women, in particular with regard to bodily functions and period handling.
Combining innovatory methods to provide targeted heat.

How to cite: Johnson, L. N. and Johnson-Amin, N.: Gear Hack for women: Polar Gear Revisited for Female FriendlyField Operations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22115, https://doi.org/10.5194/egusphere-egu24-22115, 2024.

17:00–17:10
|
EGU24-15882
|
ECS
|
On-site presentation
Floreana Miesen, Léa Rodari, Natalie Emch, Georgina King, and Ian Delaney

Fieldwork is a cornerstone of many geoscience study programmes, enhancing student learning experiences and fostering lasting social bonds. However, field-based courses can impose significant mental, physical, and financial burdens on students. This may inadvertently exclude and discriminate against those who lack the means to participate or deviate from the stereotypical image of field scientists. In designing field courses that support a wide range of students, the geosciences community has the opportunity to create a more welcoming environment and benefit from a more diverse generation of geoscientists. 

We share experiences and insights from our journey to develop institutional guidelines for field courses, which acknowledge and promote diversity, accessibility, and student well-being. We reflect on navigating the hurdles encountered while drafting these guidelines and the means to gain support for them. We explore the cultural shifts needed to challenge more conventional approaches to field-based teaching, along with questioning who traditionally participates and how courses are structured. We contrast bottom-up and needs-based approaches with top-down directives, emphasising effective communication between students and field trip leaders, as well as the impact of hierarchical structures. 

By addressing issues like physical fitness requirements and financial limitations, we propose strategies to lower entry barriers. In doing so, we aim to support and attract students from diverse backgrounds. The presentation also underscores the significance of proper communication, before, during, and after field courses, setting expectations and addressing student's concerns or challenges. Finally, we advocate for a comprehensive approach to safety, including considerations of mental health, harassment, and discrimination in formal risk assessments, accompanied by adequate training for field trip leaders.

How to cite: Miesen, F., Rodari, L., Emch, N., King, G., and Delaney, I.: Creating welcoming learning environments - towards institutional guidelines for more inclusive field courses in the geosciences , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15882, https://doi.org/10.5194/egusphere-egu24-15882, 2024.

17:10–17:20
|
EGU24-646
|
ECS
|
On-site presentation
Saurabh Vijay, Irfan Rashid, Argha Banerjee, and Chandan Sarangi

Himalaya is the longest mountain range in high-mountain Asia. The Himalaya is a home of thousands of glaciers that provide freshwater to a large population living in these countries. Glaciers are also a key indicator of regional and global climate change. Therefore, they are studied by a diverse set of researchers including glaciologists, climate scientists and hydrologists. Although satellite remote sensing and modelling communities have grown to address past, present and future changes in glaciers, field based studies are still vital. As the Himalayan range is shared by many bordering countries including India, China, Pakistan and Nepal, the strategies of conducting fieldwork vary depending on financial resources and trained manpower. As the fieldwork is time-consuming and expensive, new approaches are required.   

In this work, we show how we formed a  glaciological community of early-career permanent faculty or scientists in India to plan and conduct extensive fieldwork in a cost-effective manner. In the last three years, this group has conducted more than 5 joint field expeditions in the Indian Himalaya. Here, we highlight the challenges of multi-disciplinary and multi-institutional fieldwork. India is a huge country with diverse cultures, habits and languages. Different institutions have different policies of sharing field equipment. Proper planning and time management are critical, but not everyone, especially first-timers, do not understand their role in practice, which makes it very difficult for the field managers. Consistent measurements at the benchmark locations are very important, but this is often challenging as the institute/principal investigator-wise funding is limited and time-varying. Overcoming this scenario, this group developed a multi-institutional funding with efficient and resource sharing plan to set up a benchmark site in the Himalaya, which can be used for consistent monitoring for more than 10 years and address key science questions related to glaciology, hydrology and micro-climate. Such a project can be joined by any institute across the world and the partnering institute may add value by adding measurement plans and science objectives as well as benefit from existing capacities at the benchmark location. This group has previously hosted research partners from Germany and Australia. Some group members worked with several research groups and acted as a bridging partner between Indian and non-Indian researchers. A bridging partner played an important role to handle aspects related to expectations, working culture and training. 

In short, this study highlights the successes and challenges of such an efficient consortium that promote international collaboration, consistent monitoring and training of students in the field as well as knowledge and manpower exchange.     

How to cite: Vijay, S., Rashid, I., Banerjee, A., and Sarangi, C.: A multidisciplinary and multi-institutional fieldwork in the Indian Himalaya for glacio-hydro-climatological studies, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-646, https://doi.org/10.5194/egusphere-egu24-646, 2024.

Virtual Outcrops
17:20–17:30
|
EGU24-10205
|
On-site presentation
Virtual field trips for school students and the essence of the outdoor learning environment
(withdrawn)
Nir Orion
17:30–17:40
|
EGU24-10548
|
On-site presentation
Antonio Abreu, Rania Sabo, Kristof Vandenberghe, and Eunhee Lee

Abstract

In 2015, UNESCO adopted its third designation (UNESCO Global Geoparks) to promote the conservation, education, and sustainable development of Earth's geological features, aligning with one of its mandates – geoscience. In a significant development in 2021, UNESCO adopted the Recommendation on Open Science, the first international standard setting instrument on open science. This sparked a growing interest in the potential availability of geological data from Geoparks through open data sources.

Geoparks face different challenges that demand an inclusive solution, and three-dimensional (3D) outcrop modelling emerges as a possible option for some of the issues, while allowing for the implementation of the UNESCO Recommendation on Open Science:

  • It can assist in the conservation and sustainable management of geological resources, through providing an open-source platform for informed decision-making.
  • Addressing educational challenges, 3D models become interactive tools for virtual field trips, extending the reach of UNESCO Global Geoparks to a broader audience.
  • For geotourism, outcrop modelling enhances promotional efforts by showcasing unique geological features, attracting, and retaining visitors.
  • These models offer detailed insights into geological structures, aiding risk management application via proactive mitigation of hazards.
  • 3D modelling overcomes accessibility limitations by enabling virtual exploration of otherwise hard-to-reach locations, fostering a more inclusive understanding of geological heritage.
  • The ease of sharing these models fosters collaboration among geologists and researchers, contributing to a collective knowledge base about geological formations located within UNESCO Global Geoparks.

Developing 3D outcrop modelling in Geoparks will require collaboration with a specialized organisation. Due to its proficient acumen in this domain, Deep-time Digital Earth (DDE) emerges as a compelling collaborator in this project. Working with DDE could allow the preparation of a digital inventory of interesting geological features and land/seascapes for a particular under-represented region, such as Africa. The implementation methodology is set to take place over a few phases, piloting selected UNESCO Global Geoparks. The first phase will include the identification of which UNESCO Global Geoparks are already implementing the technology and what is the interest of Geoparks in using this technology.

Overall, it is expected that 3D outcrop modelling will be instrumental in overcoming various challenges, making Geoparks more accessible, engaging, and sustainable.

How to cite: Abreu, A., Sabo, R., Vandenberghe, K., and Lee, E.: Implementation of UNESCO’s Recommendation on Open Science through Outcrop Modelling in UNESCO Global Geoparks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10548, https://doi.org/10.5194/egusphere-egu24-10548, 2024.

17:40–17:50
|
EGU24-19026
|
On-site presentation
Edward Robeck, Lindsay Mossa, Lauren Brase, and Sequoyah McGee

Digital outcrop models (DOMs) provide a rich set of resources for geoscience education, including DOMs that are primarily developed for scientific purposes. This presentation will illustrate the initial stages of an analytical approach as applied to DOMs that is intended to enhance their use in educational settings. Several resulting principles will be offered for consideration and discussion, with the goal of informing the design and dissemination of DOMs to maximize their use in instruction.

Like other resources that aren’t first and foremost developed for use in education, the instructional applications of DOMs can be enhanced by making use of their inherent curriculum potential. The concept of curriculum potential posits that both materials designed for education and those designed primarily for other uses hold possibilities for instruction that are greater than what was intended by the people who created them. Elements of curriculum potential can be drawn out of resources in a variety of ways. For example, skilled educators often can intuitively recognize ways of using resources in instruction that are both novel and effective—and may extend past the intentions of the designers. Another way to bring curriculum potential to light is through analysis based on curriculum theory, instructional models, and other formal frameworks. Such analyses can identify principles to guide effective pedagogical applications of the materials. In instances where developers are open to the resources they are generating being applied across multiple use cases, such principles can provide guidance for broadening the benefits the materials offer to different user groups simultaneously.

It can be reasoned that one way to recognize possible uses of DOMs in education is to position them as analogs to other resources that are primarily developed for use outside of instruction and for which similar analyses have taken place. For example, geoheritage sites are analogous to DOMs in that geoheritage sites are selected and described for purposes (e.g., recognition, conservation) that are not primarily related to their role as educational resources. Therefore, what has been learned about how information associated with geoheritage sites can be disseminated in ways that facilitate their use in education may be suggestive of ways that DOMs can be presented to enhance their educational uses. This analytical crossover seems especially plausible since many DOMs focus on elements of geoheritage sites.

The education and outreach personnel at the American Geosciences Institute (AGI) have been exploring the curriculum potential of geoheritage sites using concepts from various frameworks in curriculum and instruction—including place-based education, phenomenon-based learning, pedagogical content knowledge, and others. The goal is to inform the dissemination of information about geoheritage sites (e.g., in textual descriptions, web portals) to enable the realization of their curriculum potential. One outcome is the recommendation that information be provided that contextualizes each geoheritage site across multiple values (e.g., aesthetic, educational, cultural, historical, scientific). Such information can be expected to foster both multi-disciplinary and interdisciplinary learning. A similar analytical approach can be applied to DOMs and can benefit from (and perhaps be accelerated by) what has been learned about geoheritage sites.

How to cite: Robeck, E., Mossa, L., Brase, L., and McGee, S.: Exploring the Curriculum Potential of Digital Outcrop Models: Guidance from Geoheritage Sites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19026, https://doi.org/10.5194/egusphere-egu24-19026, 2024.

17:50–18:00
|
EGU24-16328
|
ECS
|
On-site presentation
Xia Wang, Hanting Zhong, Jianhua Chen, Zongqi Lin, Bingqian Wang, Mingcai Hou, Yalin Li, and Chengshan Wang

Outcrops are the basics of geosciences. Investigation of geological outcrops is the bedrock of geological research, but the data acquisition based on traditional fieldwork is often limited by the size and accessibility of the outcrops. Especially in a hundreds-meter scale area, geological studies often rely on single-profile analysis, which makes it challenging to reveal the overall characteristics of systems with spatial heterogeneity (e.g., carbonate deposition, reef complex). For geological education, field excursions are necessary for the students, but the accessibility of the outcrops is seriously impacting the global equality of geological education because of regional conflicts or poverty. Geological heritage outcrops, important outcrops such as GSSP (Global Stratotype Section and Point), or outcrops with both scientific and commercial value need to be documented to prevent future destruction; besides the traditional solutions such as photography or videos, 3D digital outcrops can save more diversified geological information.

Utilizing UAVs allows for a cost-effective and highly efficient approach to investigating outcrops. Through close-range photogrammetry employing UAV-captured images, the creation of precise three-dimensional models for outcrops has become feasible, reaching an impressive level of accuracy at the centimeter scale. Under the Deep-time Digital Earth (DDE) framework, the DDE-Outcrop3D platform (outcrop3D.deep-time.org) is an open-access Web platform for real-scene 3D digital outcrops. It is based on the Cesium open-source 3D earth engine, providing functions for multiple data uploading, sharing, information editing, and community outreach. DDE-Outcrop3D platform has 124 digital outcrop models from Asia, Europe, and Africa, all accessible to the public. The latest versions of DDE-Outcrop 3D can provide a new pathway to scientific research and education, and aim to foster broader engagement among researchers, educators, and enthusiasts, providing a valuable resource for immersive exploration and enhanced understanding of geological outcrops.

Here, we present the main features of the DDE-Outcrop3D platform and its application scenarios on geological research and education, scientific communication, and preservation of geological heritages. 

Acknowledgement: This work is funded by “Deep-time Digital Earth”, an IUGS-recognized Big Science Program.

How to cite: Wang, X., Zhong, H., Chen, J., Lin, Z., Wang, B., Hou, M., Li, Y., and Wang, C.: DDE-Outcrop3D: A new pathway to the Deep-time Earth, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16328, https://doi.org/10.5194/egusphere-egu24-16328, 2024.

Posters on site: Fri, 19 Apr, 10:45–12:30 | Hall A

Display time: Fri, 19 Apr, 08:30–Fri, 19 Apr, 12:30
Chairpersons: Florina Roana Schalamon, Michael Henry Stephenson, Jennifer McKinley
How to fieldwork? - Planning, conducting, and implementing valuable fieldwork (methods) in geoscience
A.89
|
EGU24-1090
|
ECS
Elaine Runge, Maria Dance, Rebecca Julianne Duncan, Marjolein Gevers, Eleanor Maedhbh Honan, Florina Roana Schalamon, and Daniela Marianne Regina Walch

Title: Coming in from the cold: addressing the challenges experienced by women conducting remote polar fieldwork 

Authors:

1. Runge, Elaine – Danish Hydrological Institute, Marine & Coastal Field Services, Agern Allé 5, Hørsholm, Denmark

2. Dance, Maria - School of Geography and the Environment, University of Oxford, S Parks Rd, Oxford, UK

3. Duncan, Rebecca Julianne - School of Life Sciences, University Technology Sydney, Broadway Rd Ultimo, Sydney, Australia and Department of Arctic Biology, University Centre in Svalbard, Longyearbyen, Norway

4. Gevers, Marjolein - Institutes des dynamiques de la surface terrestre (IDYST), Université de Lausanne, Géopolis Mouline, 1015 Lausanne, Switzerland

5. Honan, Eleanor Maedhbh - Department of Geography, Durham University, Durham, DH1 3LE, UK

6. Schalamon, Florina Roana- Department of Geography and Regional Sciences, University of Graz, Heinrichstraße 36, 8010 Graz, Austria

7. Walch, Daniela Marianne Regina - Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, QC G5L 3A1, Rimouski, Canada

Abstract:

Remote fieldwork is an important component of polar research within the physical and social sciences. Yet there is increasing recognition that the inherent logistical, physical, psychological, and interpersonal challenges of remote polar fieldwork are not felt equally across the polar research community, with minority groups often disproportionately affected. Although historically lacking diversity, the demographics of polar researchers have shifted and the way polar research is conducted has been changing in response. However, there are still barriers to equal participation. Removing these barriers would attract scientists from more diverse backgrounds and improve scientific outcomes. 

We explored the lived experiences of those who identify as women in polar fieldwork through a review of current literature and an anonymous survey, using existing networks to connect with women working in polar research. We synthesised and evaluated the literature and survey responses with regards to topics such as harassment, hygiene, inefficient communication, and gendered work expectations and responsibilities to form a holistic understanding of the key fieldwork challenges faced by women.  The majority of survey respondents (80%, n=373) had encountered negative experiences during fieldwork, with the most common and impactful issues relating to field team dynamics and communication, sexism, rest, and weather. Many other issues including fieldwork preparation, work expectations, harassment, and personal space and privacy were also raised by respondents. 

From the recent developments and critical points of action that we identified in the literature and the survey, we propose strategies to remove barriers to participation and improve the experiences of women in polar fieldwork. These include strategies that are applicable on both an individual and organisational level. A diverse polar research community is imperative in order to address the challenges presented by current unprecedented climate change. Although we focussed on women’s experiences, through this study, we seek to advance the discourse on challenges faced by minorities in polar research. 

How to cite: Runge, E., Dance, M., Duncan, R. J., Gevers, M., Honan, E. M., Schalamon, F. R., and Walch, D. M. R.: Coming in from the cold: addressing the challenges experienced by women conducting remote polar fieldwork , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1090, https://doi.org/10.5194/egusphere-egu24-1090, 2024.

A.90
|
EGU24-4152
Annett Junginger, Friedemann Schrenk, and Christian Albrecht

Freshwaters and their biodiversity are in a state of crises across the world. Yet, these ecosystems are of global significance and provide resources on which, unlike in Europe, the livelihoods of millions of people depend in sub-Saharan Africa. Academics and African universities, however, lack experts for meeting multifold challenges of saving hotspots of aquatic biodiversity. Two consecutive three-week field schools, funded by Volkswagen Foundation, have been conducted in Malawi between 2022 and 2023 and were based on a sustainable network of African and German partnerships initiated during previous field schools. For the first time, the field schools were initiated and conceptualized by former African participants, who now have been acting as field school lecturers. These field schools aimed at training M.Sc. and Ph.D. students from DR Congo, Zambia, Sierra Leone, Malawi, Tanzania, Uganda and Germany in paleo-limnology, aquatic ecosystem science, human health, sustainable resource use and conservation. All participating countries have important freshwater ecosystems often shared with neighboring countries experiencing strong and multifold anthropogenic pressure. The magnitude of these impacts can only be understood by a combination of paleo-limnological methods with actualistic ecological water analyses. The field schools have covered major aspects ranging from a) reconstructing past conditions, b) assessing the present state to c) planning the future. A One Health framework has been adopted, making use of a citizen science approach to translate our field work findings into public outreach projects. The ultimate goals of the field schools were: a) Establishment of permanent network of interdisciplinary collaboration in paleo-environmental and aquatic sciences between African and German universities, b) Establishment of a sustainable teaching and research program in paleo-environmental and aquatic sciences applicable at African universities such as in Malawi, and c) Initiation of a long-term collaboration and of joint research and teaching projects between African scientific partners in the participating countries. This collaborative approach opens new perspectives on further research for the sake of better management of African inland waters in general. Most importantly, this cooperation exposed and equipped young researcher with skills for further research work in their own countries.

How to cite: Junginger, A., Schrenk, F., and Albrecht, C.: Learning from the past to shape the future: Environmental change, health and ecosystem services of Lake Malawi, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4152, https://doi.org/10.5194/egusphere-egu24-4152, 2024.

A.91
|
EGU24-8622
Franco Marenco and Claire Ryder

Airborne platforms offer great opportunities for atmospheric research into the upper atmospheric layers, and they range from large and fully-equipped Atmospheric Research Aircraft (ARA) to small Unmanned Aerial Vehicles (UAVs) carrying only a few instruments on-board. Such mobile platforms permit to sample the atmosphere from a unique perspective and can be used to obtain better insight on processes, to map the atmosphere in three dimensions, to validate models and spaceborne sensors, and to assist decision-making during emergencies (e.g. volcanic eruptions). We have had the chance to work closely with the Facility for Airborne Atmospheric Measurements (FAAM) ARA and of developing research closely with the Unmanned Systems Research Laboratory (USRL) of the Cyprus Institute. In this presentation we will discuss some typical challenges of airborne research and how campaigns can be optimised. All platforms are obviously different, and teams work in different ways, but several aspects of the campaign optimisation process are common.

Teamwork and communications are important requisites for success. Moreover, flight planning is a complex process, involving the use of several (often ad hoc) products providing forecasts and situational awareness, but also a knowledge of the operational constrains and a continuous negotiation between the scientific, logistics and technical teams. A thorough preparation is a key to success, and is practiced both before and during a campaign. Unpredicted situations will systematically occur, and they require having a clear prospect of the scientific objectives, the operational processes and limits, and having done a prior “homework” to understand the preferred options. Decisions have to be taken at several stages: when planning a campaign, between flights during a campaign, and whilst a flight is being carried out. Each decision is a compromise between scientific objectives and operational constrains and it is vital to be able to make the right choices. The ultimate goal of this process is to have the aircraft in the right place at the right time, as many times as possible, but without forcing excessively onto the operational limits. For a scientist, learning to understand the technical jargon (e.g. familiarity with altitudes in feet, name of airborne manoeuvres, etc) and the operational processes (e.g. how air traffic control works, how long in advance decisions need to be made, etc) is as important as understanding the scientific objectives of the campaign. To concentrate on the decision-making process rather than on how to locate information, a good prior organisation is required. A “dry run” can help in practicing and simulating the campaign in advance, with uncertainties and decisions to be taken, so as to test the best compromises and solidify the teamwork.

Ultimately, airborne observations are sporadic, and some of them will be intrinsically inefficient because precious flight time can be lost during transits, when instruments fail, or when the targeted atmospheric conditions do not occur. The optimisation process aims to improve the overall efficiency and transform the uncertainties and unforeseen circumstances into a success.

How to cite: Marenco, F. and Ryder, C.: Optimising airborne research, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8622, https://doi.org/10.5194/egusphere-egu24-8622, 2024.

A.92
|
EGU24-11289
Margit Simon and Øyvind Paasche and the GoNorth consortium

In 2009 the United Nations' Shelf Commission supported the Norwegian claim for an extended continental shelf north of Svalbard, into the Nansen Basin.

Given that the scientific knowledge about the new-gained shelf areas is limited, it implied the necessity for new marine fieldwork and data-collection as this would provide expertise required by national authorities to reach sound and science-based decisions about the area in question.Hence the mission of the Norwegian GoNorth consortium was established. It continues to organize and launch a series of scientific expeditions deep into the Arctic Ocean to acquire new and essential knowledge about the oceanic areas, from the sea floor and subsea geology, through the water column, to the surface sea ice. The program is ambitious and strives for scientific excellence while at the same time being economically feasible and a key knowledge-provider. The program seeks, in other words, to bring Norway to the forefront as a responsible manager of the environment and the natural resources.

The first GoNorth expedition was carried out in 2022 with Norwegian research vessel Kronprins Haakon heading for the Nansen Basin and the northern part of the Knipovich Ridge. In 2023, during the summer-expedition with the RV Kronprins Haakon, GoNorth scientists did, in collaboration with scientists onboard the German icebreaker vessel Polarstern, target one of the slowest spreading areas of the global system of mid-ocean ridges: the Gakkel Ridge. An exciting summer-cruise is planned for 2024 in collaboration with the Swedish icebreaker ship Oden with destination Morris Jesup Rise and the Yermak-plateau. Here we will introduce the project history and goals, its recent successful field campaigns and discoveries made as well as present the outlook for future Polar Ocean explorations.

 

How to cite: Simon, M. and Paasche, Ø. and the GoNorth consortium: GoNorth – Fieldwork in the Arctic Ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11289, https://doi.org/10.5194/egusphere-egu24-11289, 2024.

A.93
|
EGU24-16189
|
ECS
Federica Gaspari, Francesco Ioli, Federico Barbieri, Rebecca Fascia, Livio Pinto, and Lorenzo Rossi

Applying skills gained from university courses marks a pivotal step in crafting engaging and innovative teaching methods (Balletti et al., 2023). Over its 10 editions, the Summer School hosted by Politecnico di Milano's Section of Geodesy and Geomatics, within the Department of Civil and Environmental Engineering, has consistently aimed to bridge the divide between theory and practice. Focused on instructing students in the design and execution of topographic surveys, particularly in environmentally challenging alpine regions impacted by climate change, this program ensures hands-on learning experiences.

The Summer School is framed within a long-term monitoring activity of the Belvedere Glacier, a temperate debris-covered alpine glacier, located in the Anzasca Valley (municipality of Macugnaga – Italy). Since 2015 annual in-situ GNSS and UAV photogrammetry surveys have been performed to derive accurate 3D models of surface of the entire glacier, allowing the derivation of its velocity and volume variations over the last decade. In a week-long program, undergraduate and graduate students in Engineering, Geoinformatics and Architecture are encouraged to collaborate, with the supervision of young tutors who are passionate about the topic, to develop effective strategies for designing in-situ measuring surveys, fostering problem solving and team-working. The teaching materials used to introduce key theoretical concepts as well as to guide students through practical exercises with processing software is made openly accessible online with a dedicated website built on top of an open-source GitHub repository (https://tars4815.github.io/belvedere-summer-school/), providing the groundwork for developing collaborative online teaching and expanding the material for other future learning experiences  (Potůčková et al., 2023).

Adding value to the experience, students also contribute to an ongoing project regarding the monitoring of the glacier (Ioli et al., 2021; https://labmgf.dica.polimi.it/projects/belvedere/), providing valuable insights on the recent evolution of the natural site. The 2D and 3D georeferenced products are indeed published in an existing public repository on Zenodo (https://doi.org/10.5281/zenodo.7842348), sharing results with a wider scientific community.

The valuable experience and outcomes from various Summer School editions led the organizing team to secure the EGU 2023 Higher Education teaching grant program. This opportunity facilitated enhancements to the teaching material and bolstered support for in-situ experiences.

Bibliography:

Balletti, C., Capra, A., Calantropio, A., Chiabrando, F., Colucci, E., Furfaro, G., Guastella, A., Guerra, F., Lingua, A., Matrone, F., Menna, F., Nocerino, E., Teppati Losè, L., Vernier, P., Visintini, D. (2023): The SUNRISE summer school: an innovative learning-by-doing experience for the documentation of archaeological heritage, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 147–154

Ioli, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Passoni, D., Pinto, L. (2021). Mid-term monitoring of glacier’s variations with UAVs: The example of the belvedere glacier. Remote Sensing, 14(1), 28.

Potůčková, M., Albrechtová, J., Anders, K., Červená, L., Dvořák, J., Gryguc, K., Höfle, B., Hunt, L., Lhotáková, Z., Marcinkowska-Ochtyra, A., Mayr, A., Neuwirthová, E., Ochtyra, A., Rutzinger, M., Šedová, A., Šrollerů, A., Kupková, L. (2023): E-TRAINEE: open e-learning course on time series analysis in remote sensing, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1/W2-2023, 989–996

How to cite: Gaspari, F., Ioli, F., Barbieri, F., Fascia, R., Pinto, L., and Rossi, L.: From theory to real-world geomatics applications: glacier monitoring fieldworks through an innovative teaching program, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16189, https://doi.org/10.5194/egusphere-egu24-16189, 2024.

Virtual Outcrops
A.94
|
EGU24-2116
|
Sara Carena, Anke Maria Friedrich, and Apoorv Avasthy

3D visualization skills are essential in geology, but although virtual 3D tools have been available for years, we have yet to fully integrate them in our courses. In addition, physical field trips not only present accessibility problems for students with limited mobility but can be a considerable financial burden on everyone. Covid restrictions accelerated and expanded a project we were already working on: creating a collection of 3D models of rocks and outcrops to be used as a training aid in the classroom. Travel restrictions, which at our institution included a yearlong complete ban of all field courses (including one-day trips), spurred us to expand the original concept to include also a full 3D virtual environment for students to carry out field trips and mapping exercises. In choosing our tools, we considered three factors: costs, time, and level of difficulty. That meant finding commercial software and hardware that was affordable, did not require programming or engineering skills, or special licenses (e.g. pilot license for large drone), using areas for which we already had a significant amount of material, and storing our 3D models on public platforms.

We created 3D models of hand samples and of key outcrops at several field locations that we normally visit in both Spain and Germany by acquiring photos and movies in the field using hand-held cameras and a small drone (which in Europe only requires insurance and operator's registration). We then processed imagery to produce scaled and georeferenced models with Metashape Pro. We used 3DVista Pro, originally designed for real estate showcasing, to produce immersive and interactive virtual field trips (VFTs). This software allowed us to link 3D models, which are stored on either Sketchfab or V3Geo, with videos, animations, photos, maps, text, and realistic sounds for each field scene. An e-learning module in the form of quizzes and game-like features can be incorporated too. We put together different types of VFT: show-and-tell standard VFTs and VFTs with a specific theme (e.g. unconformities), field exercises where students carry out measurements and observations both virtually and later in in the field, and complementary material for remote mapping courses. The reception from students has been positive, so we have kept using virtual tools after lockdown ended.

How to cite: Carena, S., Friedrich, A. M., and Avasthy, A.: Virtual geology and virtual field trips, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2116, https://doi.org/10.5194/egusphere-egu24-2116, 2024.

A.95
|
EGU24-15319
|
ECS
|
Highlight
Ferdinando Musso Piantelli, Pauline Baland Baland, Anina Ursprung, and Roland Baumberger

The Swiss Geological Survey (SGS) is the competence centre for the subsurface and georesources of the Swiss Confederation. It provides up-to-date, high-quality spatial reference data for the whole of Switzerland in the form of nationwide geological datasets and 3D geological models. Between 2024 and 2030, the SGS is funding the Swiss Alps 3D project, which consists of eight research projects involving multiple universities and aims to develop a consistent large-scale 3D geological model of the main contacts and structures of the Swiss Alps.

In this poster we present the complete workflow that will be used for the construction of this 3D model and the project plan for the next 7 years. The main challenge for 3D modelling in Alpine regions is the lack of subsurface data (seismic, boreholes, etc.). However, the high relief, the sparse vegetation and the large number of scientific studies make these regions an excellent site for advanced surface-based 3D modelling. Based on the new Tectonic Map of Switzerland 1:500'000 (2024, in prep.), the area is divided into eight 3D modelling projects according to their paleogeographic origin and structural evolution. The resulting models will then be merged into a single large-scale 3D model.

At the beginning of each modelling project, a 1:25’000 scale geological map of the main structural and lithostratigraphic contacts will be produced by verifying and harmonising a 2D geological dataset compiled for the study (published maps, strike and dip data, tunnel and seismic data). 3D modelling software packages (e.g., Move™, SKUA-Gocad) will be then used to generate a network of regularly spaced (1000 m) geological cross sections throughout the area. By applying explicit or implicit 3D interpolation and meshing techniques between the cross sections and the surface outcrop lines (i.e., spline curve method), lithological and structural boundaries will be then interpolated to generate 3D surfaces of each horizon of the model. The workflow presented here offers the chance to gain validation approaches for domains only weakly constrained or with no subsurface data available, by generating a 3D model that integrates all accessible geological information and background knowledge.

Swiss Alps 3D will generate key knowledge by establishing an experienced modelling community and 3D visualization of the main structures and lithostratigraphic boundaries of the Central European Alps. The development of such a model will provide a framework model of the area as a basis for higher resolution 3D models to be used for infrastructure planning, groundwater studies, natural hazard assessment, education and research purposes. In addition, such models will provide access to strategic subsurface knowledge for geo-resource and geo-energy management and exploration.

How to cite: Musso Piantelli, F., Baland, P. B., Ursprung, A., and Baumberger, R.: Swiss Alps 3D: building a large-scale 3D underground model of the Central European Alps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15319, https://doi.org/10.5194/egusphere-egu24-15319, 2024.

A.96
|
EGU24-5166
|
Highlight
Jingwen Luo, Huohua Xiong, Chao Zhang, and Yao Guo

       The article discusses how the DDE Outcrop-3D provides a new perspective on the research and dissemination of ancient Chinese landscape painting.By combining the digital outcrop record with the textbook Painting Manual of the Mustard Seed Garden(1679) 1from Qing Dynasty, artists would explain diverse techniques of “Cun” used in Chinese landscape painting in a more visualized way.With the painting method of rocks (painting technique of “Cun” ) from the textbook and geological features such as rock structures and stratigraphical age shown by DDE Outcrop-3D mixed, artists would create more realistic, detailed and emotional paintings, as well as more artistic expression for the record of geological information.

      In the past, beginners could only learn the techniques of landscape painting with Painting Manual of the Mustard Seed Garden and ancient paintings, while they can have a deeper and more intuitive understanding of the traditional landscape painting expression according to DDE Outcrop-3D nowadays, acquiring more passionate visual feelings and emotional expression than copying ancient paintings when learning and creating. Based on the record of digital outcrop, some conventional Chinese landscape painting teaching and creation tasks can be accomplished indoor with new inspiration.  Traditional Chinese painting techniques can be used to depict the mountains, rivers, lakes and on this planet recorded by DDE Outcrop-3D. New possibilities will be created for artists and scholars to spread Chinese landscape painting culture in a scientific way.

       At the same time, geologists can classify the different rocks and outcrops presented by ancient Chinese painters based on DDE outcrop-3D records, providing new views for the study and appreciation of ancient Chinese paintings.In the past, artists could only interpret Chinese painting from Chinese characterized perspectives such as images, brush manner or ink manner, so the audience could not be personally on the scene and understand the original concept of "enjoyable for traveling and living" in Chinese landscape painting better.

      As a cutting-edge technology providing 3D visualization of geological and other natural phenomena, the application of DDE Outcrop-3D in the interdisciplinary field marks that it can not only play an important role in geological science, but also has significance for research, education and dissemination of traditional Chinese paintin

 1.The book had published in Europe as name of “The Tao of Painting” in 1957 . The book introduces the painting methods of various shaped rocks in Chinese landscape painting in detail, and is a book that systematically summarizes the Chinese painting styles of different dynasties. Since the Qing Dynasty, the book has been one of the preliminary textbooks for Chinese landscape painting and a reference for every beginner who tries to learn Chinese painting.

How to cite: Luo, J., Xiong, H., Zhang, C., and Guo, Y.: Advancing Chinese Landscape Painting Research with DDE-Outcrop 3D Technology, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5166, https://doi.org/10.5194/egusphere-egu24-5166, 2024.

A.97
|
EGU24-4239
|
ECS
Yao Guo

The DDE-Outcrop3D plays an important role in the digitization of geological resources. By digitally preserving, presenting, and reconstructing classic geological outcrops worldwide, the DDE-Outcrop3D Project broadens the user’s fieldwork visions and perspectives, allowing convenient access to fieldwork data, and helping users alleviate constraints imposed by time, distance, and financial resources. This project enables users to partake in immersive, online scientific explorations and educational endeavors, which has significance for public education in natural history museums. Firstly, digital outcrops provide scientific and reliable references for the exhibition scene designing of museum galleries related to geological environments and natural ecology. Secondly, digital outcrops visualize geological knowledge in multimedia forms within museum exhibits, enhancing interactivity with visitors and improving the knowledge density and display efficiency per unit area. Lastly, digital outcrops extend beyond museum confines, supporting museum-school collaborative scientific curricula aimed at cultivating autonomous geological research skills among K-12 students. This paper provides an in-depth example of the DDE-Outcrops3D application at the Chengdu Museum of Natural History (also known as the Museum of Chengdu University of Technology), offering a detailed exposition of the technology’s substantial value in public education for natural science museums.

How to cite: Guo, Y.: Visualization of DDE-Outcrop 3D to Promote Public Education in Natural History Museums, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4239, https://doi.org/10.5194/egusphere-egu24-4239, 2024.

A.98
|
EGU24-337
|
ECS
Mariia Oliinyk, Ihor Bubniak, Andrij Bubniak, Yevhenii Shylo, Anatolii Vivat, Valerii Mandzuk, and Taras Marko

This study presents a comprehensive exploration of Mlynky Cave in Ternopil Region and Medova Cave in Lviv, Ukraine, utilizing advanced geospatial technologies for 3D modeling. In the investigation of Mlynky Cave located in the Ternopil region, terrestrial laser scanning and digital photogrammetry techniques were employed. Concurrently, for the exploration of Medova Cave situated in the city of Lviv and renowned as a unique tourist attraction, a combination of terrestrial laser scanning and manual scanning using the Stonex X120 handheld laser scanner was implemented.

The application of terrestrial laser scanning and digital photogrammetry to Mlynky Cave facilitated the capture of high-resolution point clouds, resulting in a detailed three-dimensional representation of the cave's interior. The generated 3D model offers an immersive and navigable experience, allowing for remote exploration and analysis.

In contrast, the exploration of Medova Cave, being a distinctive tourist landmark in Lviv, involved a dual scanning approach. Terrestrial laser scanning contributed to the overall mapping of the cave, while the Stonex X120 handheld laser scanner was specifically employed for targeted and detailed scanning of intricate features. This combination of technologies resulted in a holistic 3D model that preserves the unique geological formations and historical significance of Medova Cave.

The findings from this research highlight the effectiveness of integrating various scanning methodologies, including terrestrial laser scanning and manual scanning with devices like the Stonex X120. The comprehensive 3D models not only contribute to scientific research and geological analysis but also serve as valuable tools for conservation efforts and educational purposes.

This study sets a precedent for the application of advanced scanning techniques in cave exploration, showcasing the adaptability of technology in addressing the diverse challenges encountered during fieldwork. As the boundaries of geospatial technology in subterranean environments continue to expand, this research contributes to the evolving methodologies in cave exploration, emphasizing the importance of a multi-faceted approach to documentation and preservation.

How to cite: Oliinyk, M., Bubniak, I., Bubniak, A., Shylo, Y., Vivat, A., Mandzuk, V., and Marko, T.: Exploring the Depths: 3D Modeling of Ukraine's Caves through Terrestrial Laser Scanning and Digital Photogrammetry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-337, https://doi.org/10.5194/egusphere-egu24-337, 2024.

A.99
|
EGU24-5636
|
ECS
Zongqi Lin, Bingqian Wang, Yuqing Wu, Wenfeng Zhou, Xueli Peng, Yuhao Xu, Chenyu Wang, and Cai Wang

With the ongoing evolution of unmanned aerial vehicle (UAV) technology in geology, particularly the emergence of oblique photogrammetry, a novel approach for creating high-precision 3D models of geological outcrops has been introduced. This technique offers a more abundant and detailed perspective compared to traditional orthophotography. To guarantee optimal data collection, an extensive preliminary survey of the surrounding area of the geological outcrop was conducted using satellite imagery. We selected the DJI Mavic 3 drone, equipped with a 4/3 CMOS sensor and boasting an effective resolution of 20 million pixels. The incorporation of a Hasselblad lens significantly enhances the image quality. During the photography process, we meticulously controlled critical parameters such as the overlap rate of images, flight altitude, and the angle of photography. The overlap rate was typically maintained between 60-70%, necessitating systematic photography from macroscopic to microscopic levels and the continual adjustment of the drone camera's tilt to capture intricate details of the outcrop from various angles, enabling the construction of a more detailed and comprehensive 3D model.

Our project has digitally captured and modeled over 120 notable geological outcrops across 12 countries, including China, the United Arab Emirates, Italy, France, Germany, Spain, and Namibia, etc. We have amassed over 240,000 drone photos for 3D modeling, in excess of 7,000 panoramic shots, and more than 800 video segments featuring international experts discussing outcrops, culminating in 8000GB of data. The essence of our work is rooted in precise UAV oblique photography, and through extensive experimentation, we've established a systematic approach, achieving centimeter-level resolution.

Looking to the future, our goal is to further the digitalization of classical geological outcrops, field practice bases, and world geoparks. The data and models we produce are invaluable for geological research and education, offering a more vivid and intuitive understanding of complex geological phenomena to both the academic community and the public.

How to cite: Lin, Z., Wang, B., Wu, Y., Zhou, W., Peng, X., Xu, Y., Wang, C., and Wang, C.: Exploration and Application of High-Precision Inclined Photography Technology in Digital Collection of Geological Outcrops, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5636, https://doi.org/10.5194/egusphere-egu24-5636, 2024.

Posters virtual: Fri, 19 Apr, 14:00–15:45 | vHall A

Display time: Fri, 19 Apr, 08:30–Fri, 19 Apr, 18:00
Chairpersons: Marjolein Gevers, Florina Roana Schalamon, Maria Ansine Jensen
How to fieldwork? - Planning, conducting, and implementing valuable fieldwork (methods) in geoscience
vA.24
|
EGU24-18133
Jan van Bever Donker, Delia Marshal, Rudy Maart, Luyanda Mayekiso, Henok Solomon, Matthew Huber, and Nompumelelo Mgabisa

As a result of significantly increased class sizes, heightened safety consciousness, significantly increased health and safety regulations, and limited staff resources, a project was started in 2017 to investigate ways and means to improve the impact of field instruction to undergraduate students.

This allowed us to hit the ground running when COVID-19 hit the world, as the lock down regulations triggered a switch to teaching remotely. This significantly accelerated the development of our Virtual Field Trips (VFTs), in this case to be able to provide suitable field evidence for the students as group travel to the field was not possible, except the fourth year small groups.

VFT’s were therefore developed for use at first year, second year, third year and fourth year level of instruction.  In close collaboration with the instructor responsible for teaching the various courses, three different sets of VFTs were developed:

A set of four VFTs for the first year introductory Earth Sciences course, illustrating sedimentary, structural, and igneous features in outcrops as well as hand specimen. Three VFTs were used during practical teaching sessions followed by a test, after which the VFTs were available on-line for self-study. This was followed by the fourth, more comprehensive tour, which was used as an end of practical course test. Comparison of the two test results demonstrated a significant learning gain.

One multi outcrop tour was prepared to illustrate the features the field geologist needs to look out for when applying structural geology to slope stability assessment in an engineering geological setting in the context of raising an existing storage dam wall to increase the storage lake capacity. This lecture was followed by a test prior to the VFT after which the same test was applied sfter the VFT. Comparing the results of the two tests demonstrated that the learning gain increased significantly in accordance with the level of education of the participants.

Finally, a set of seven tours was built to prepare the fourth-year students prior to going to the field by showing them the various sedimentary features they were to visit in the field. Here we used video explanations on the outcrop, 3D LIDAR specimen and drone videos for the spatial aspect.  In this case the final report prepared by the students after the field excursion was compared with the results of the previous year’s class where no VFT was available and again we could demonstrate a distinct learning gain.

In the last case to show the sedimentological features in preparation for the real field trip,  we could demonstrate a positive impact on the outcomes of the field excursion, thus providing an affirmative answer to the question whether VFTs can be used to prepare students for fieldwork.

How to cite: van Bever Donker, J., Marshal, D., Maart, R., Mayekiso, L., Solomon, H., Huber, M., and Mgabisa, N.: Can Virtual Field Trips be used to prepare students for real fieldwork?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18133, https://doi.org/10.5194/egusphere-egu24-18133, 2024.

vA.25
|
EGU24-13374
Patrice Rey

Geological mapping is a cognitively daunting task. In part because field geology is a discipline that largely deals with the invisible. It is through geological mapping that geologists reveal the invisible geology hidden beneath the Earth's surface, as well as the invisible geology that once lay above ground and has been lost to erosion. The geological map lies precisely at the intersection between these two invisible worlds. It is also challenging because it requires advanced 3D thinking skills. Yet, the benefits of learning geological mapping are invaluable for the development of communication skills, critical thinking, resilience, and leadership. Geological mapping also compels students to embrace and navigate uncertainties through iterative hypothesis testing.
However, preparing and delivering high-quality field courses is expensive in terms of time and resources. On the students' side, accessing these courses is a growing challenge, as many of them face clashes with other curriculum commitments, part-time jobs, caregiving responsibilities, or financial constraints. Virtual Reality (VR) is emerging as a transformative technology to teach and learn about our natural world, enhance field experiences, and mitigate accessibility issues.
VR liberates teachers and learners from the tyranny of 2D devices in which our natural world is reduced to planar images. Broadcasting from the metaverse into a Zoom session, I will demonstrate how geological mapping can be effectively learned in VR. The virtual world I'll show replicates the landscape in central NSW, Australia, where our undergraduate students are introduced to geological mapping. At a 1:1 scale, this virtual world features a high-resolution satellite image draped over a lidar DEM (resolution 5 m). Georeferenced to a local magnetic field parallel to the natural prototype, students use a virtual GPS handset to locate themselves and a virtual geological compass to measure structural features. Other virtual tools include field notebooks, geological hammers, and digital cameras to collect geological data and conduct geological mapping. Photogrammetric models of actual outcrops and high-resolution photographs of fossils and microstructures are positioned accurately, providing students with realistic field-like encounters. The immersive experience is enhanced by 3D models of trees, bushes, shimmering waterways, a volumetric soundscape mimicking the real environment, realistic weather conditions, and time-dependent sunlight.
Once immersed in this virtual yet realistic environment, students experience field geology in a manner relatively close to reality. Important missing ingredients include physical and mental fatigue, as well as the anxiety triggered by potential risks such as getting lost, injuries, bee stings, snake bites, etc. Nevertheless, VR offers a very effective way to prepare students for geological mapping, its principles, and workflows. For students returning from the field, it also offers the possibility to revisit some outcrops or check outcrops they may have missed while in the field. Importantly, for students unable to attend field courses, VR offers an invaluable opportunity to grasp the essence of geological mapping principles, bridging the accessibility gap for a diverse student population.

How to cite: Rey, P.: Live From the Metaverse! An Introduction to Geological Mapping in Immersive Virtual Reality, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13374, https://doi.org/10.5194/egusphere-egu24-13374, 2024.

vA.26
|
EGU24-16411
Eleanor L. Jones, Ilkka S. O. Matero, Christiane Hübner, Rudolf Denkmann, Ashley Morris, Øystein Godøy, and Heikki Lihavainen

Svalbard Integrated Arctic Earth Observing System (SIOS) is an international consortium in which 28 member institutions from 10 countries cooperate to develop and maintain a regional Earth observing system in and around Svalbard. We will present some of the tools that this consortium uses to facilitate fieldwork within Earth System Science. Firstly, our Logistics Sharing Notice Board is a platform where you can offer spare logistical resources or ask for logistical support with your fieldwork. Secondly, our Observation Facility Catalogue can help you learn about existing infrastructure and measurements in Svalbard, and you can even enter your own instruments and infrastructure. In addition, our e-learning platform is a valuable resource for newcomers to research and fieldwork in Svalbard and our data catalogue provides an overview of and access to relevant existing datasets. Finally, SIOS offers funding to facilitate access to the research infrastructure owned by SIOS member institutions (our Access Programme), as well as to improve infrastructure in and around Svalbard (our Optimisation Programme).

How to cite: Jones, E. L., Matero, I. S. O., Hübner, C., Denkmann, R., Morris, A., Godøy, Ø., and Lihavainen, H.: Svalbard Integrated Arctic Earth Observing System: Tools to help you do fieldwork in Svalbard, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16411, https://doi.org/10.5194/egusphere-egu24-16411, 2024.