EGU24-10619, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-10619
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Josephine Submarine Seamount: New Insights from multibeam data and seabed sampling for environmental conditions in the Early Quaternary

Vasco Carvalho1, Pedro Terrinha1,2, Marta Neres1,2, Antje Voelker1,3, Luís Batista1, and Marcos Rosa1
Vasco Carvalho et al.
  • 1Instituto Português do Mar e da Atmosfera, Divisão de Geologia e Georrecursos Marinhos, Portugal
  • 2Instituto Dom Luiz, Universidade de Lisboa, FCUL, Campo Grande, 1749-016 Lisboa, Portugal
  • 3Centre of Marine Sciences (CCMAR), Algarve University, Campus de Gambelas, Faro, Portugal

The Josephine submarine seamount is located in the NE Atlantic Ocean around 470 km west of the coast of mainland Portugal and 500 km northeast of Madeira Island on the vicinity of the Africa-Eurasia plate boundary. With 47 km in length and 10 km in width, it rises 2500 meters above the adjacent abyssal plains, with its top standing at a depth of 170 m. It is a basaltic submarine seamount that yielded ages of 16.3 ± 0.9Ma to 11.7±0.7Ma (Geldmacher et al. 2006).

Multibeam and backscatter data were acquired to increase our knowledge about the seamount. The backscatter data shows the presence of fine sediment on the eroded top of the seamount, not present in the northern part. The top of the seamount dips gently (~1º) to the northwest allowing the deposition of fine grained sediment down to ~500 m where the seafloor is irregular with slopes dipping between 10⁰ and 15⁰ and the igneous rocks crop out.

Morphologic analysis suggests that the very flat and smooth surface of the southernmost portion of Josephine Seamount has been above sea level and subjected to near coastal erosive processes of areas lying at ~420 m depth. Since the sea level of the last 15 Ma has not been lower than 160 m of the present-day levels (Miller et al. 2020), tectonic and/or erosional processes must have lowered the seamount’s height by at least 260 meters.

Sedimentary rocks were dredged from depths from 480 to 347 m, on the southeastern part of the Josephine seamount and were analyzed for their shape, composition and sedimentary facies. The dredged samples are calciclastic limestone blocks that have a half horn torus shape (donut). Most of the specimens are trespassed by a 3 to 5 cm long conical cavity that developed from the base to the top of each sample.

The rocks consist of 96.6% of foraminifera tests (82.4% planktic and 17.6% benthic), with a very low mineral content. The grains are diagenetically cemented by a calcite matrix (confirmed by EDS analysis). The presence of the planktonic foraminifera species Globorotalia truncatulinoides, whose first occurrence dates of 1.93 Ma (Wade et al., 2011), provides a maximum age of formation, making these sedimentary rocks at least 10 Ma younger than the volcanic rocks that constitute the Josephine Seamount basement. The presence of the benthic foraminifera Lobatula lobatula and Discanomalina semipunctata indicate strong currents that could have contributed to the erosion of the seamount’s top.

This work was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds through the project LISA (https://doi.org/10.54499/PTDC/CTA-GEF/1666/2020).

How to cite: Carvalho, V., Terrinha, P., Neres, M., Voelker, A., Batista, L., and Rosa, M.: Josephine Submarine Seamount: New Insights from multibeam data and seabed sampling for environmental conditions in the Early Quaternary, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10619, https://doi.org/10.5194/egusphere-egu24-10619, 2024.