GM9.6 | Submarine Geomorphology and Subseafloor Seismic Geomorphology
EDI
Submarine Geomorphology and Subseafloor Seismic Geomorphology
Co-organized by OS2/SSP3, co-sponsored by ILP and IAG
Convener: Alessandra Savini | Co-conveners: Jacob GeersenECSECS, Luca FallatiECSECS, Sebastian Krastel, Aaron Micallef, Andrew NewtonECSECS
Orals
| Mon, 15 Apr, 08:30–12:30 (CEST)
 
Room -2.20
Posters on site
| Attendance Mon, 15 Apr, 16:15–18:00 (CEST) | Display Mon, 15 Apr, 14:00–18:00
 
Hall X1
Orals |
Mon, 08:30
Mon, 16:15
The ocean floor hosts a tremendous variety of forms that reflect the action of a range of tectonic, sedimentary, oceanographic, biological and (bio)geochemical processes at multiple spatio-temporal scales. Many such processes are hazards to coastal populations and offshore installations, and their understanding constitutes a key objective of national and international research programmes and IODP expeditions. High quality bathymetry, especially when combined with sub-seafloor and/or seabed measurements, provides an exciting opportunity to integrate the approaches of geomorphology and geophysics, and to extend quantitative geomorphology offshore. 3D seismic reflection data has also given birth to the discipline of seismic geomorphology, which has provided a 4D perspective to continental margin evolution.
This interdisciplinary session aims to examine the causes and consequences of geomorphic processes shaping underwater landscapes, including submarine erosion and depositional processes, submarine landslides and canyons, sediment transfer and deformation, volcanic activity, fluid migration and escape, faulting and folding, and other drivers of seafloor geomorphic changes. The general goal of the session is to bring together researchers who characterise the shape of past and present seafloor features, seek to understand the sub-surface and surface processes at work and their impacts, or use bathymetry and/or 3D seismic data, combined with borehole petrophysics and geological cores, as a model input. Contributions to this session can include work from any depth or physiographic region, e.g. oceanic plateaus, abyssal hills, mid-ocean ridges, accretionary wedges, and continental margins (from continental shelves to abyss plains). Datasets of any scale, from satellite-predicted depth to ultra-high-resolution swath bathymetry, sub-surface imaging and sampling, are anticipated. We also aim at providing a window into the cross-disciplinary research of seismic geomorphology, exposing participants to differing perspectives, the latest workflows, examples of data integration, and, importantly, the potential pitfalls of equifinality in seismic interpretation and treating geophysical cross-sections as if they are outcrops. Emphasis will be given to contributions illustrating how the reflection seismic data have been investigated and how the results have been applied (e.g. paleogeography/paleoenvironmental reconstruction, seafloor engineering, or carbon/nuclear storage).

Orals: Mon, 15 Apr | Room -2.20

Chairpersons: Jacob Geersen, Luca Fallati
08:30–08:35
08:35–08:45
|
EGU24-648
|
ECS
|
Highlight
|
On-site presentation
Anna Katsigera, Paraskevi Nomikou, Kosmas Pavlopoulos, Paraskevi Polymenakou, Konstantinos Karantzalos, Aggelos Mallios, Sergio Simone Scire Scapuzzo, Andrea Luca Rizzo, Gianluca Lazaro, Manfredi Longo, Walter D'Alessandro, Fausto Grassa, Lars-Eric Heimbürger-Boavida, Valsamis Ntouskos, Christos Antoniou, and Sotiris Spanos

Volcanic eruptions stand as formidable threats to adjacent communities, unleashing a spectrum of hazards such as earthquakes, tsunamis, pyroclastic flows, and toxic gases. The imperative for proactive management of volcanic risks cannot be overstated, particularly in densely populated areas where the potential for widespread devastation looms large. Kolumbo, an active submerged volcano located approximately 7 kilometers northeast of Santorini Island in Greece at 500m depth, serves a pertinent case. Its historical record is marred by an eruption in 1650 AD which triggered a relentless tsunami. The aftermath witnessed havoc on neighboring islands, coupled with casualties stemming from noxious gases in Santorini. Eyewitness accounts mention maximum water run-up heights of 20m on the southern coast of Ios, a staggering 240m inundation on Sikinos, and a disconcerting flooding of up to 2km² of land on the eastern coast of Santorini.

Recent studies suggest that a potential future explosive eruption of Kolumbo poses a substantial hazard to the northern and eastern coasts of Santorini. Unfortunately, the absence of a concrete management protocol, leaves these areas vulnerable to an impending threat that demands immediate attention. Therefore, it is recommended that a comprehensive approach be adopted, involving scientific research (active monitoring, hazard maps), community engagement, preparedness planning with government agencies, and the development of timely response strategies to reduce the associated risks, prevent casualties, and mitigate the consequences on the region's economy and infrastructure. Our team has multidisciplinary data from past oceanographic expeditions that will help us to understand Kolumbo’s behavior. These include a) High-resolution multibeam bathymetry data and optical data., b) a dense network of sub-seafloor seismic reflection profiles, c) a series of the seafloor and sub-seafloor samples of microbial mat and sediments, d) CTD data, e) several polymetallic (Au, Ag, As, Sb, Pb, Hg, Mo, Zn, Cu, Tl) CO2 diffuser chimney samples and f) tephra in marine sediment cores. Despite the current knowledge that we managed to obtain, monitoring is needed to efficiently assess potential hazards and create early warning systems and management protocols for an imminent eruption from Kolumbo. In the current context, advanced sensors have been deployed to monitor Kolumbo's active hydrothermal field as part of the SANTORY project. The SANTORY project aims to create innovative communication tools and establish interregional monitoring protocols, providing the scientific community, policymakers, and stakeholders with the means to assess hazard warning codes effectively.

How to cite: Katsigera, A., Nomikou, P., Pavlopoulos, K., Polymenakou, P., Karantzalos, K., Mallios, A., Scire Scapuzzo, S. S., Rizzo, A. L., Lazaro, G., Longo, M., D'Alessandro, W., Grassa, F., Heimbürger-Boavida, L.-E., Ntouskos, V., Antoniou, C., and Spanos, S.: Unveiling the Multifaceted Hazard Risks of Volcanic Eruptions: The case of Kolumbo submarine volcano, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-648, https://doi.org/10.5194/egusphere-egu24-648, 2024.

08:45–08:55
|
EGU24-22
|
ECS
|
On-site presentation
Lyndon Nawanao and Noelynna Ramos

Large submarine landslides are a global concern as they can trigger tsunamis with no clear precursors. While geological characterization of submarine landslides remains a challenge to many areas worldwide, the availability of global bathymetric datasets and spatial analysis tools has led to progress in mapping these submarine geomorphological features. Morphological and statistical analyses of submarine landslides and their attributes enable the identification of regions susceptible to large submarine failures and covariates that are good predictors of submarine landslide volume. This study identifies significant clusters of large submarine landslides mapped (n=1214) in the Negros–Sulu Trench System by testing the spatial dependence of volume using global Moran’s I and Getis-Ord (Gi*) statistic. This study further explores a spatial model that best elucidates the distribution of submarine landslide volume. Global Moran’s I suggests significant positive spatial autocorrelation, while Gi* statistic reveals local clustering of large-volume submarine landslides, where the densest clustering occurs offshore of southern Panay Island. Among the 18 spatial regression models, the (1) univariate spatial Durbin, (2) nested, and (3) spatial Durbin error with the maximum slope as the predictor have the lowest Akaike information criterion (AIC) of 2056.1, 2057.0, and 2057.8, respectively. The spatial regression models also revealed that mean depth is a poor predictor of submarine landslide volume. Log likelihood-ratio test suggests a simpler option of the nested model. The spatial Durbin error model better represents the underlying local heterogeneities such as sediment flux and subduction processes in triggering submarine landslides than the global spillover effects of the spatial Durbin model. Furthermore, this study highlights the dominant role of slope and tectonic processes that induce oversteepening, triggering large submarine landslides that may induce damaging tsunamis. The identified offshore areas with significant clustering of large submarine landslides are valuable information for offshore geophysical surveys and tsunami hazard assessment in the region.

How to cite: Nawanao, L. and Ramos, N.: Spatial Regression Modeling and Distribution of Submarine Landslides in the Negros–Sulu Trench System, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22, https://doi.org/10.5194/egusphere-egu24-22, 2024.

08:55–09:05
|
EGU24-7466
|
On-site presentation
Liwen Chen and Wei-Chung Han

Taiwan has excellent natural conditions for marine energy development. However, due to the active marine environment and geological processes, submarine geohazards must be carefully assessed before engineering development offshore southeastern Taiwan. Tectonically, it is situated in the oblique collision between the Eurasian Plate and the Philippine Sea Plate with fast exhumation and eroding transportation of sediments. Previous studies suggest that the Southern Longitudinal Trough (SLT) is characterized by a series of backthrusts and slumpings. Considering the rapid erosion and deposition led by extreme events, including typhoons and active tectonics, offshore SE Taiwan is an excellent site to study submarine geomorphology and seafloor instabilities.

After detailed structural and morphological analyses from seismic and bathymetry data, some geological features, faultings, gullies, and submarine canyon systems are recognized, moreover, several sliding scars and slumpings are interpreted from repeated and sequence surveys. It gives us insights into the potential mechanisms of sediment transportation and geological hazards by discussing the structure connections and distribution.

Since the study area has high ocean energy potential, appropriate site selection and development planning based on geological analysis should be carried out before marine industry projects. Whether in marine scientific research, site selection, engineering design, or social and economic development, studying geological processes and seabed stability offshore SE of Taiwan is urgent. Our results could provide a basis for subsequent seabed monitoring and engineering development.

How to cite: Chen, L. and Han, W.-C.: Submarine Geomorphology and Seafloor Instabilities Revealed from Geophysical Data Offshore Southeastern Taiwan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7466, https://doi.org/10.5194/egusphere-egu24-7466, 2024.

09:05–09:15
|
EGU24-8468
|
On-site presentation
Gaétan Sauter, Damien Bouffard, Koen Blanckaert, Stefano C. Fabbri, Flavio Anselmetti, and Katrina Kremer

Slope failures within subaquatic deltas have the potential to induce underwater mass movements that can be tsunamigenic. Historical cases of subaquatic delta failures have been documented in marine contexts (Anthony & Julian, 1997; Bailey et al., 2021) and lacustrine settings (Girardclos et al., 2007; Hilbe & Anselmetti, 2015). However, the traces and failure planes of these mass movements are rapidly buried due to the high sedimentation rates caused by incoming rivers so that detailed process studies of such failures are challenging.

Given the rise in population near shorelines, there is a need to gain a deeper understanding of this hazard. By monitoring present-day sedimentation processes, we can gain insights into the dynamics of erosion, deposition, and potential slope failures. As lakes are more accessible than marine settings yet share similar sedimentation processes, lacustrine deltas can serve as natural laboratories for any deltaic system.

Our study employs a multi-method approach to monitor sedimentation processes within the Aare Delta of Lake Brienz, situated in a Swiss perialpine lake known for historical delta failures (Girardclos et al., 2007). This approach comprises (i) analyzing bottom currents derived from an Acoustic Doppler Current Profilers (ADCPs) campaign conducted from June to September 2022. These data are compared with river parameters (discharge, temperature, turbidity; from Federal Office of Environment) and meteorological data (rainfall, wind speed, directions; from Federal Office of Meteorology) to evaluate the governing processes of underflows, and (ii) examination of high-resolution bathymetric difference maps derived from two surveys conducted in 2018 and 2023. This assessment seeks to understand geomorphic changes over time and establish connections between these changes and the observed bottom currents.

We show the results of these campaigns that offer valuable insights into sedimentation processes within lacustrine deltas. Repetitive bathymetric surveys highlight substantial geomorphic changes in submerged channels, while ADCPs moored in those areas reveal the presence of underflow currents. Yet, the exact triggers behind these events remain unclear, challenging our understanding of sediment-transport mechanisms within the Aare Delta.

References:

Anthony, E. J., & Julian, M. (1997). The 1979 Var Delta Landslide on the French Riviera: A Retrospective Analysis. Journal of Coastal Research, 13(1), 27-35. http://www.jstor.org/stable/4298587

Bailey, L. P., Clare, M. A., Rosenberger, K. J., Cartigny, M. J. B., Talling, P. J., Paull, C. K., Gwiazda, R., Parsons, D. R., Simmons, S. M., Xu, J., Haigh, I. D., Maier, K. L., McGann, M., & Lundsten, E. (2021). Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth and Planetary Science Letters, 562, 116845. https://doi.org/10.1016/j.epsl.2021.116845

Girardclos, S., Schmidt, O. T., Sturm, M., Ariztegui, D., Pugin, A., & Anselmetti, F. S. (2007). The 1996 AD delta collapse and large turbidite in Lake Brienz. Marine Geology, 241(1), 137‑154. https://doi.org/10.1016/j.margeo.2007.03.011

Hilbe, M., & Anselmetti, F. S. (2015). Mass movement-induced tsunami hazard on perialpine Lake Lucerne (Switzerland): Scenarios and numerical experiments. Pure and Applied Geophysics, 545-568. https://doi.org/10.1007/s00024-014-0907-7

How to cite: Sauter, G., Bouffard, D., Blanckaert, K., Fabbri, S. C., Anselmetti, F., and Kremer, K.: Examining sedimentological processes in a sublacustrine delta: from underflows to geomorphic changes (Lake Brienz, Switzerland), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8468, https://doi.org/10.5194/egusphere-egu24-8468, 2024.

09:15–09:25
|
EGU24-5688
|
ECS
|
On-site presentation
Renzhi Li, Yaping Wang, and Shu Gao

The initiation threshold of sediment motion, a key component in quantifying sediment transport, has potential link to intermittent turbulence bursts. Here, we elaborated in situ experiments on coastal sea bottom covered with cohesive sediments, to extract intermittency parameters. For the first time, waiting time between turbulence bursts was utilized to capture the occurrence of sediment initiation events. A relationship found between waiting time and shear stress reveals the different intermittency feature of sediment flux time series before and after reaching the threshold, which can be used to determine the initiation threshold of sediment motion. Multi-site results demonstrate the limitations of traditional empirical formulae for fine-grained sediments, where cohesiveness becomes more pronounced as grain size decreases and the deviation can reach 600%. The empirical formula was modified using grain size, and the modified calculations were in good agreement with observed values, which will greatly assist in sediment transport and geomorphology model predictions.

How to cite: Li, R., Wang, Y., and Gao, S.: Turbulence intermittency effects on initiation threshold of sediment motion in natural waters , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5688, https://doi.org/10.5194/egusphere-egu24-5688, 2024.

09:25–09:35
|
EGU24-8508
|
ECS
|
On-site presentation
Basile Caterina, Romain Rubi, Elias Fakiris, Dimitris Christodolou, Xenophon Dimas, Maria Geraga, George Papatheodorou, and Aurélia Ferrari

Straits are crucial in terms of oceanic circulation between basins. Many modern straits are dominated by tidal currents that flow differently than in the connected basins. These tidal currents are shaping the seafloor into complex geometries, alongside sediment sources, tectonic activities and inherited lowstand features. The proposed common tidal strait depositional model comprises a strait centre zone in erosion bounded on both sides by depositional areas with 2D and 3D tidal dunes (known as dune-bedded strait zones). This model does not consider another type of hydrodynamic forcing that can be generated in strait, internal tidal waves. The aim of this study is to evidence the combined effect of tidal currents and internal tides on the morphosedimentary features of the strait seafloor.

We focused here on the Rion-Antirion strait in Greece, connecting the Corinth Gulf with the Ionian Sea. Despite its location in the microtidal Mediterranean context, this 2 km wide and 70 m deep strait is strongly experiencing strong tidal currents. We utilized high-resolution multibeam bathymetry (MBES) covering a 21 km² area to reveal seafloor morphological structures. Swath bathymetric profiles were coupled with chirp sub-bottom and sparker reflection profiles imaging the internal sedimentary structures and with currents data from two ADCP campaigns. To comprehensively assess all the oceanographic parameters, we also incorporated satellite data and ROMS modelling. Consequently, we establish connections between oceanographic circulation, sea bottom dynamics within the strait and Gulf, and the observed sedimentary features.

Typically, in tidal settings, sand deposition occurs when the tidal current velocity drops, usually before the currents change direction, and the existing strait tidal model shows sand dunes. The complex bathymetry features observed in the Rion tidal strait lack dunes but features erosional characteristics such as deep pools and crest morphology, with limited depositional features. In our settings, the numerical model demonstrates that the strait experience strong tidal currents alongside currents associated with the internal tide, which are predominantly out of phase, generating significant turbulences. As a result, there are no periods during which sand can settle. These factors underline the absence of deposition in this case and the need to revise the strait depositional model to incorporate this new end-member.

How to cite: Caterina, B., Rubi, R., Fakiris, E., Christodolou, D., Dimas, X., Geraga, M., Papatheodorou, G., and Ferrari, A.: A new fully erosive end-member to the strait depositional model: the importance of strong internal tides and shallow water settings, case of the Rion-Antirion Strait (Greece) , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8508, https://doi.org/10.5194/egusphere-egu24-8508, 2024.

09:35–09:45
|
EGU24-18223
|
ECS
|
On-site presentation
Paul Blin, Lies Loncke, Xavier Durrieu de Madron, Pauline Dupont, Ivane Pairaud, Sébastien Zaragosi, Kelly Fauquembergue, Christophe Basile, and Scientific team Diadem

The Demerara Plateau in the Equatorial Atlantic is a transform marginal plateau (TMP) where the Deep Western Boundary Current (DWBC) transports North Atlantic Deep Water (NADW) to the South Atlantic. This current, circulating in the depth between 1300 and 3500 m, represents the deep part of the thermohaline circulation. It also forms hundreds of sedimentary structures along its path, looking like giant flute-casts and called 'comets’. Those comets can reach 3 km in length and theses field of 'comets' more than ten kilometers large. Nautile dives, AUV acquisitions (equipped with Multibeam Sounder SMF, Doppler current meter ADCP, Sediment Sounder) and a mooring, implemented during the DIADEM campaign (N/O Pourquoi Pas?, January-February 2023, DOI : 10.17600/18000672), first allow to document the dynamics of the current DWBC in this equatorial domain, its spatial and temporal variability. Furthermore, investigated the numerous associated sedimentary systems associated with this current, as the "comets" forming giant erosion structures. Two AUV bathymetric surveys and four Nautile dives have helped to better understand the location of these hydrodynamic structures. They are located along outcrops of intensely tilted and fractured carbonated rock, probably associated with an ancient sliding mass. Nautile data coupled with photogrammetry are also used to reconstruct the outcrops of these carbonate blocks and to characterize their deformation. AUV ADCP data (hydrodynamics) acquired in parallel highlight the difference in current intensity between the comet head, where the current has a much greater magnitude than in the comet tail, which appears more sedimented. Measurements of currents and turbidity recorded at the mooring deployed upstream of the comet over 17 days of recordings clearly demonstrate the effect of the semidiurnal tide in the high-frequency variability of currents and sediment resuspension. Taken together, these geomorphological, oceanographic and sedimentary parameters provide a clearer picture of those complex seafloor sedimentary structures that seem to result from the interaction of the DWBC with remobilized carbonated outcrops. Our observations also suggest that those comets initially formed under higher hydrodynamic conditions than those recorded today.

How to cite: Blin, P., Loncke, L., Durrieu de Madron, X., Dupont, P., Pairaud, I., Zaragosi, S., Fauquembergue, K., Basile, C., and Diadem, S. T.: Investigation of sedimentary structures associated with the Deep Western Boundary Current in French Guiana (Demerara Plateau), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18223, https://doi.org/10.5194/egusphere-egu24-18223, 2024.

09:45–09:55
|
EGU24-19123
|
On-site presentation
Leonid Budanov, Alexander Sergeev, Alexander Chekulaev, Igor Neevin, Vladimir Zhamoida, and Daria Ryabchuk

Studies were carried out in three key areas in the eastern Gulf of Finland during joint cruises of the A.P. Karpinsky Russian Geological Research Institute and the Shirshov Institute of Oceanology of the Russian Academy of Sciences in 2023. Multibeam echosounding, sub-bottom profiling, and various sediment sampling techniques were performed, and a significant amount of new geological and geophysical data was collected. Analyses of seismic sections, supported by sediment sampling data and a digital elevation model (DEM) of the sea floor, allowed for the revelation of six acoustic unions (AU) which are divided by reflecting interfaces and have unique acoustic waveforms. The sediments of the AUs were developed in different stages of deglaciation and in the postglacial period of the Late Pleistocene - Holocene. A complex analysis of collected and archived data allowed for the construction of DEMs of buried paleo-relief surfaces. Both the sea floor and paleo-relief DEMs allowed for the mapping and discovery of geomorphological features of landforms specific to the study area, such as submerged end moraine, drumlins, eskers, De Geer, etc. The studies provide new data on the Gulf of Finland basin deglaciation and establish sedimentological processes, features, and the impact of exogenous processes on the geological environment.

How to cite: Budanov, L., Sergeev, A., Chekulaev, A., Neevin, I., Zhamoida, V., and Ryabchuk, D.: Results of high-resolution acoustic studies in Eastern Gulf of Finland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19123, https://doi.org/10.5194/egusphere-egu24-19123, 2024.

09:55–10:05
|
EGU24-9763
|
ECS
|
Virtual presentation
Asen Sabuncu, Kürşad Kadir Eriş, Emin Demirbağ, and Denizhan Vardar

Late Quaternary paleoceanography and hydrography of the Sea of Marmara (SoM) have been extensively investigated because of its key location between the Black Sea and the Mediterranean Sea. Although the hydrography and paleoceanography of the SoM are reasonably known for the MIS 1-MIS 6, our knowledge of the stages is revealing and based on discontinuous seismic records from shelf cores. Integrated three-dimensional paleomorphologic and sedimentary modeling was used to predict the basin architecture and depositional pattern of sedimentary units in SoM.

By unraveling the structure and decompressing the stratigraphy of the targeted stratigraphic unit, we successfully modeled the ancient bathymetry during the MIS1-2 and MIS4-5 transition periods. Over 700 gridded 3.5 kHz high-resolution seismic profiles were processed, revealing distinct reflectors and stratigraphic units separated by reflectors that signify regional unconformities across 12 sediment piston cores, totaling approximately 25 meters in length. Accurate depth-scaling of chronostratigraphic units within cores is crucial for precise sedimentation rate calculations. Aligning seismic profiles with cores involved cross-referencing Multi-Sensor Core-Logger (MSCL) data with seismic reflection coefficients and amplitudes across various stratigraphic layers. Using data from the MSCL, we produced different synthetic seismograms to identify and correct depth-scale inconsistencies caused by mismatches in the upper sedimentary layers in seismic profiles. This technique is centered on synchronizing synthetic seismograms, derived from high-quality physical property logs, with corresponding CHIRP profiles to rectify these discrepancies. Mapping sequence boundaries, delineated by distinct reflection coefficients and amplitude values across the entire gulf area using pseudo-3D seismic data, allowed for comprehensive representation. To model basin evolution, isopach and isochron maps were constructed using a 2-D cubic B-spline interpolation method.

This study transferring the boundaries determined in marine isotopic periods, MIS5-MIS4, from cores to the acoustic environment for the creation of paleo-depth maps has been completed. Sample comparison models have been prepared on profiles taken from Çınarcık Basin towards Tekirdağ Basin for the application of grid interpolation modeling for different basins, using amplitude values from produced synthetic seismograms.

The robust age models derived from these cores, paired with reflectors corresponding to known levels in existing literature, positioned the marine-lacustrine transition at 13.7 k years before present (ka BP) at a water level of -85 meters and at 97.4 ka BP, the transition from marine to terrestrial environment. Using this timeline, we generated multiple maps illustrating paleo-bathymetry, sediment thickness, and mass-flow charts in the different basins, allowing us to simulate the environmental conditions in the SoM during the transitions.

Keywords: Sea of Marmara, Seismic Stratigraphy, Synthetic Seismogram, Age-Depth Modeling, Paleobathymetry Modelling

How to cite: Sabuncu, A., Eriş, K. K., Demirbağ, E., and Vardar, D.: Pre-Holocene Morphobathymetry of Sea of Marmara (SoM) Sedimentary Basins: A Case Study With Precise Correlations Developed by Sediment Cores and HR Seismic Profiles, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9763, https://doi.org/10.5194/egusphere-egu24-9763, 2024.

10:05–10:15
|
EGU24-15545
|
On-site presentation
Anna Gehrmann and Wim Lekens

Offshore wind projects benefit immensely from a good understanding of the seafloor. Together with the sub-bottom geology and geotechnical properties as well as geohazards and physical hazards, the seafloor conditions can be integrated in ground models and hazard maps as part of a holistic offshore wind site characterization, that enables successful wind farm development and reliable power production.

A full understanding of the seafloor requires “seafloor reading skills”: appropriate data mining, utilization, and interpretation. The seafloor is full of geological, environmental, and anthropogenic features which may affect a wind farm during its lifecycle, such as boulders, mobile sediment, escarpments/faults, wrecks, UXO, cables, seabed habitats and much more. However, when understood properly, we can comprehend the seabed conditions and processes and handle the different challenges at the seabed from installation to production, affecting e.g., foundation feasibility and HSE.

Sørlige Nordsjø II is an envisaged offshore wind site in the southern Norwegian North Sea. Following a multi-method approach, we utilized different geological and geophysical data, such as MBES bathymetry and backscatter, side scan sonar data, boreholes and vibrocores, sub-bottom profiler data, and 2DUHR seismic.

Key results that were achieved include:

  • Detailed seafloor lithology map: Differentiation between different sand facies and glacial lag deposits.
  • Understanding of sediment mobility: Sand waves and megaripples mapped; bedforms, grain size variations and anthropogenic features linked to zones of erosion, transport, and deposition.
  • Determination of boulder locations: Boulder fields and individual boulders mapped; size of boulders determined to mostly up to 3 m.
  • Update of cable and wreck positions, by utilizing backscatter and side scan sonar images, and magnetic anomalies.

We were able to pull out deep knowledge from the available data, to bring it in a coherent order and provide a holistic understanding of the site’s seafloor. This is a major step towards the aim of making informed cost-saving decisions throughout the offshore wind lifecycle.

How to cite: Gehrmann, A. and Lekens, W.: How to read the seafloor and the importance to offshore wind projects. Examples from Sørlige Nordsjø II, Norwegian North Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15545, https://doi.org/10.5194/egusphere-egu24-15545, 2024.

Coffee break
Chairpersons: Andrew Newton, Alessandra Savini
10:45–10:55
|
EGU24-19617
|
ECS
|
On-site presentation
Margherita Fittipaldi, Adrien Moulin, Daniele Trippanera, Nico Augustin, Froukje van der Zwan, Laura Parisi, and Sigurjon Jonsson

The Red Sea axis hosts an oceanic ultra-slow spreading ridge which is generally arranged into right-stepping segments. The largest apparent ridge offset runs at the transition between the northern and central Red Sea, amounts to ~ 100 km along a N-S trend, and is referred as to the Zabargad Fracture Zone (ZFZ). The ZFZ separates ridge segments characterized by exposed oceanic crust (the Mabahiss “Deep” in the north and the central Red Sea further south), but its nature and precise geometry are debated owing to the extensive Miocene evaporites that cover the basement structures. The ZFZ is the location of the most intensive seismic activity in the northern Red Sea, with a reported historical magnitude 6.5 earthquake. Due to its proximity with coastal communities, the ZFZ thus potentially poses a significant hazard. In order to better characterize the seismic potential of the ZFZ, we collected new high-resolution bathymetric data of the Mabahiss Deep and ZFZ, and use them to map the tectonic structures over both exposed-basement and salt-covered areas.Our findings reveal typical slow spreading-ridge features in the Mabahiss area, such as an axial MORB volcano with a summit caldera located in the middle of a 9 x15 km axial valley bounded by up to ~300-m-high normal fault escarpments. In addition, our results highlight a highly deformed salt cover in the ZFZ area and several salt diapirs outcropping near its eastern edge. The orientation of salt-deformation fabrics records a clear rotation from rift-parallel to rift-normal in the vicinity of the ZFZ, suggesting a potential control by underlying basement structures. Overall, the deformed area indicates that the ZFZ is a 70 km long and 15 km wide fracture zone, oriented roughly N-S, and potentially consisting of several NE-SW rift-perpendicular faults. These new data provide the first step to characterize the geometry and seismic potential of the ZFZ and to constrain the segmentation of the ridge axis in the northern Red Sea, emphasizing the importance of continued research to improve our understanding of this complex region and its potential impact on coastal communities.

How to cite: Fittipaldi, M., Moulin, A., Trippanera, D., Augustin, N., van der Zwan, F., Parisi, L., and Jonsson, S.: The Zabargad Fracture Zone and Mabahiss Deep, Northern Red Sea: new insights from new high-resolution bathymetric mapping, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19617, https://doi.org/10.5194/egusphere-egu24-19617, 2024.

10:55–11:05
|
EGU24-13887
|
ECS
|
On-site presentation
Teddy Widemann, Eric Lasseur, Johanna Lofi, Benoît Issautier, Carine Grélaud, Serge Berné, Philippe A. Pezard, and Yvan Caballero

The prediction of offshore sedimentary architectures is a first plan approach to the geological study of continental margins. While such work is commonly led using seismic surveys tied to well-logs, we are interested in land-sea objects for which there is no direct tie between seismic signal and lithology. More precisely, we look at shoreline clinoforms and more continental deposits of which size is below used seismic resolution, and their integration at the shelf-scale. The Roussillon Basin’s Pliocene infill satisfies these criteria. It belongs to a progradational land-sea prism about 100km-long, displaying essentially clinothems and defining the Gulf of Lion modern shelf. It is described with high quality conventional seismic profiles offshore, while outcrops and drill-cores are available onshore. However, there is no data at the transition between the two domains.

In order to predict the offshore sedimentary architecture, we establish classical equivalence hypotheses between seismic facies and expected associated sedimentary facies. This work is based on the seismic facies interpretation and on the lithologies known from outcrops and onshore drillings.

Nonetheless, without directly tied-in seismic such hypotheses rely essentially on interpretation. This, together with seismic data vertical resolution (~15m in thickness) and the upscaling from direct observations onshore, introduce uncertainties.

In order to produce more reliable sedimentary predictions, we test our hypotheses through forward seismic modelling using SeisRoX pro by NORSAR. We create small scale geological/impedance models based on onshore sedimentary observations coupled with well-logs petrophysical data (P-wave velocities). Then we simulate acoustic waves propagation through them and obtain theoretical seismic profiles that are subsequently compared to the seismic data.

This method, including a geophysical control, allows for the testing of various geological hypothesis at the outcrop-scale, and for a more objective subsurface description.

Among the results, we show that vertical velocity variations at a meter scale eventually get a specific seismic signature in terms of both geometry and amplitude on conventional seismic profiles. More generally, we illustrate different lithological models and their results, which allow for a high-resolution reconstruction of most parts of the Roussillon Basin’s Pliocene offshore prism.

How to cite: Widemann, T., Lasseur, E., Lofi, J., Issautier, B., Grélaud, C., Berné, S., Pezard, P. A., and Caballero, Y.: Forward seismic modelling, a tool for the prediction of offshore sedimentary architectures. Application to the Roussillon Basin's Pliocene land-see prism (Gulf of Lion, France)., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13887, https://doi.org/10.5194/egusphere-egu24-13887, 2024.

11:05–11:15
|
EGU24-20562
|
ECS
|
On-site presentation
Simona Caruso, Vittorio Maselli, Brice Rea, and Matteo Spagnolo

This study uses 3D seismic reflection data to conduct a detailed seismic geomorphology analysis of a portion of a glacigenic basin fan system located offshore West of Shetland in water depths greater than 1000 m.

These deposits lie downslope from a gully system linked to the Foula wedge trough mouth fan, with both systems remarkably preserved at the present-day seafloor. While the seafloor morphology has received extensive attention in existing literature, the basin fan system subsurface structure, particularly its 3D geometry and distribution, remains less understood. This study lifts the veil, unveiling its basal surface and internal architecture in unprecedented detail. The 3D seismic characterisation reveals a complex basin channel network with linear, diverging erosional features and distinctive terminal lobes. These lobes exhibit stacked and backstepping patterns. The seismic geomorphology showcases features indicative of both debris flows and turbidites. This intricate interplay suggests a complex shelf-to-basin sediment transport and deposition mechanism.

The integration of this newfound evidence with existing regional bathymetry, helped pinpoint the source of the main basin distributary channels to two of the downslope gullies.  This suggests that, initially, high energy flows remained somewhat confined within the basin area allowing erosion. These local-scale insights shed light on different sediment delivery processes and their impact on basin fans development. Ultimately, these findings contribute to a more comprehensive understanding of the Foula wedge large-scale dynamics, particularly the influence of meltwater pulses driven by paleo-morphology, substrate characteristics, and unique ice-sheet behaviour during the Pleistocene glaciations.

How to cite: Caruso, S., Maselli, V., Rea, B., and Spagnolo, M.: From Ice to Deep Water Fans: Seismic Geomorphology Reveals the Story of a Glacigenic Basin Floor Fan offshore West of Shetland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20562, https://doi.org/10.5194/egusphere-egu24-20562, 2024.

11:15–11:25
|
EGU24-20450
|
On-site presentation
Yanguang Liu, Song Zhao, and Jiang Dong

Ice sheets and ice shelves play an important role in Earth’s climate system during the late Quaternary. The cyclic growth and decay of continental ice sheets can be reconstructed from the history of global sea level. However, sea level estimates for the period of ice-sheet retreat after the Last Glacial Maximum (LGM) are full of uncertainties, especially in the Arctic Ocean. For example, the Bering Strait was a land bridge during the LGM, when sea level was ~130 m lower than today. Based on records from multiple sites, we suggest that the Chukchi shelf may not have been widely submerged during the late and/or post-Last deglacial.

The initial evidence comes from the less sea ice coverage and abnormal sediment accumulation rates during the early Holocene, and abnormally sedimentation rates have been observed in many records. Some cores have a very high sedimentation rate, on the contrary, there are hiatus in some records, even if a considerable number of differences due to chronological drift have been evaluated.

There were unusual sand layers before 8.2 ka, which can be associated with a rapid input of IRD in our proposed R11 core, accompanied by a fierce change in organic matter content. The coarse particle size indicates that it may be dominated by ice transition at this time.

The organic carbon record on the Chukchi sea-continental shelf/margin suggests that this model is attributed to ICD (Ice Complex Deposit), which results from the large-scale degradation and thawing of permafrost due to sea-level rise after the ice age. The early Holocene low sea source organic matter and low sea ice cover recorded in R09 indicate that the sea level rise is a long process, and the εNd, which represents the Pacific inflow also has a long-term lifting, during which part of the continental shelf may still be exposed to the surface or even covered by ice caps.

This situation continued until the last discharge of the Laurentide ice sheet during the 8.2 ka period, and the global sea level stabilized. After that, the maximum flux of PW inflow occurs between 6.0~ 5.0 ka. However, this situation may only be applicable in narrow and shallow continental shelves because we found new sedimentary records on the Chukchi borderland that show significantly different sedimentation rates compared to the cores raised from adjacent shelf. In that area, the sedimentation rate starts to rapidly decrease even though the water depth only increased by over hundreds of meters. Besides non-linear ages, the sedimentary records of the Chukchi borderland typically contain hiatus, and also include high IRD content and strong environmental changes. Furthermore, our neighboring region's records show significantly different carbonate content storage conditions compared to those from the Chukchi margin, which is similar to the micro fossil barren observed in the sedimentary record of the Chukchi plateau. Therefore, we need to be more cautious and consider the global perspective when studying the sedimentological environment of the Chukchi Sea and its continental margin.

How to cite: Liu, Y., Zhao, S., and Dong, J.: Extensive exposure of the Chukchi Shelf since the last deglacial, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20450, https://doi.org/10.5194/egusphere-egu24-20450, 2024.

11:25–11:35
|
EGU24-1121
|
ECS
|
On-site presentation
Bartosz Kurjanski, Nick Lee, Allan MacKay, Bill Powell, and Julien Oukili

During the Last Glacial Maximum (LGM), the British-Irish ice sheet is known to have been coalescent with the Fennoscandian ice sheet. Some models indicate that this might have been rather short-lived, whereas other reconstructions indicate an early and long-lasting coalescence of the ice sheets which, together reached the Northern North Sea continental shelf edge around 27,000 years ago. To date, the lack of empirical data, in the form of boreholes or high and ultra-high resolution seismic data has hindered efforts to validate the reconstructions and identify ice flow directions, drainage patterns, and chronology. Little is also known about the nature of the deglaciation and unzipping of the two ice sheets  which would  have likely comprised  multiple ice re-advances, stillstands, and retreats as well as an unknown duration of ice grounding which, based on experience, will result in complex and heterogeneous stratigraphy, vertically and horizontally

In this study, a unique 3D seismic dataset with bin spacing of 3.125m x 3.125m and a frequency range of ~10-160Hz will be used to reconstruct the depositional history and sequence of events in the shallow subsurface(~ 200m below sea bed) including but not limited to processes responsible for tunnel valley formation and infill, large scale glaciotectonic deformation or postglacial deposition. This will be juxtaposed against known paraglacial reconstructions to propose preliminary timing of events. Implications for offshore infrastructure projects will be subsequently discussed in the context of ground conditions identified over the site.

How to cite: Kurjanski, B., Lee, N., MacKay, A., Powell, B., and Oukili, J.: Dynamic changes in depositional patterns and glaciotectonic deformations revealed by high-resolution 3D seismic data in the Northern North Sea., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1121, https://doi.org/10.5194/egusphere-egu24-1121, 2024.

11:35–11:45
|
EGU24-15710
|
ECS
|
On-site presentation
Benedikt Haimerl, Elisabeth Seidel, Anna Gehrmann, Jonas Preine, Maryse C. Schmidt, and Christian Hübscher

The Jasmund Glacitectonic Complex (JGC) on the island of Rügen (NE Germany) is a key area where the interplay between glaciation, erosion and tectonics can be studied. Previous reconstructions are based on land-based and outcrop studies. Here, we use 148 high-resolution multi-channel seismic reflection profiles from several cruises of the University of Hamburg with RV ALKOR as well as adjacent borehole data to decipher the offshore extent of the JGC. The seismic data image erosional channels and depressions as well as moraines, which delineate the mainly southwestward directed Weichselian glacier movement. The depth of the erosional surface at around 100 m correlates with the previously modelled décollement depth. Furthermore, these results suggest a continuation of the observed glacial features onshore, highlighting the connection between the marine and terrestrial features of the JGC. Our investigations suggest that the complex evolution of the JGC is not due to three distinct ice streams, as proposed by previous studies. Instead, our data suggest that a single southwestward ice flow, which splits northeast of Jasmund, is responsible for the three-phase evolution. During the formation of the northern and eastern subcomplexes, the Cretaceous sediments were overthrusted almost perpendicular to the ice movement. In the southern subcomplex, however, the overthrusting was caused by the lateral pressure of the ice flow passing south of Jasmund. This study provides a methodological blueprint for the study of similar glacitectonic complexes elsewhere.

How to cite: Haimerl, B., Seidel, E., Gehrmann, A., Preine, J., Schmidt, M. C., and Hübscher, C.: New insight into the Evolution of the Jasmund Glacitectonic Complex from Seismic Mapping of Glacial Erosion Unconformity East of Rügen (SW Baltic Sea), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15710, https://doi.org/10.5194/egusphere-egu24-15710, 2024.

11:45–11:55
|
EGU24-7453
|
On-site presentation
Sonja Breuer, Anke Bebiolka, Axel Ehrhardt, Vera Noack, and Jörg Lang

Our research project is dedicated to the development of a comprehensive model for analysing the distribution, dimensions, and evolution of Pleistocene tunnel valleys and their deposits in northern Germany and adjacent areas. The primary objective is to leverage these findings to assess the likelihood of future tunnel-valley formation, with potential implications for the long-term (over the next 1 million years) safety of a radioactive waste repository.

To achieve our goal, we are relying on a 3D seismic dataset. Previously, the mapping of tunnel valleys on land is primarily based on 2D seismic and boreholes, which unfortunately do not provide the required accuracy. Therefore, we have opted to utilize a marine seismic dataset. This 3D seismic dataset 'GeoBasis3D' was acquired by the BGR in 2021.

The 3D seismic dataset is situated within the German Exclusive Economic Zone (EEZ) in the 'Entenschnabel' area. In this region, two intersecting tunnel valleys exist, with one located above the 'Belinda' salt dome. The interpretation of the tunnel-valley base based on the seismic data, and we will observe the influence of the crestal faults above the salt dome on the genesis and filling of the tunnel valley. The filling of the tunnel valleys will be described in terms of seismic facies. Different sedimentary processes can be interpreted from the seismic data. The deepest parts of the tunnel valley are directly filled, and the valley widens above. Some slumping can be detected along the steep slopes of the tunnel valley. Different phases of sedimentation can be observed within the tunnel valley, including both glacifluvial and glacilacustrine phases with parallel and homogenous reflectors. Since there are no available geological cores for the Quaternary in the area of the seismic surveys, we will have to rely on cores from Danish North Sea for the lithostratigraphic description of the sediments and for their chronological classification.

Our aim is to analyse sediment facies to draw conclusions about the backfilling process and repeated erosion phases. This will enable us to compare the findings with the development of onshore tunnel valleys in the next step. The tunnel valleys are a type of glacial erosion that can reach depths of up to 600 meters above sea level in northern Germany. They can have an impact on the long-term safety of a repository, which is required by law to be located at a minimum depth of 300 meters below ground level.

How to cite: Breuer, S., Bebiolka, A., Ehrhardt, A., Noack, V., and Lang, J.: Integrated 3D Seismic Analysis of Pleistocene Tunnel Valleys and their infills in the German North Sea sector , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7453, https://doi.org/10.5194/egusphere-egu24-7453, 2024.

11:55–12:05
|
EGU24-8455
|
ECS
|
On-site presentation
Sebastian Schaller, Bennet Schuster, Sarah Beraus, Marius W. Buechi, Hermann Buness, and Flavio S. Anselmetti

In the context of the DOVE (Drilling Overdeepened Alpine Valleys) project, supported by the International Continental Scientific Drilling Program (ICDP), a series of boreholes were drilled into buried overdeepened glacial troughs situated in the northern forelands of the Central and Eastern Alps. The sediments infilled into these troughs provide relatively complete sedimentary records of the Mid- and Late Pleistocene and help to better understand past glaciations, paleoclimate, and landscape evolution. As part of this project, an over 250 meters thick succession of unconsolidated Quaternary lacustrine and glacio-to-glaciofluvial sediments was successfully cored from the Basadingen Trough (ICDP 5068_2, NE Switzerland). This overdeepend trough is located in the NE sector of the former Rhine glacier's foreland lobe and is associated with an SSE-NNW valley system that connects the present-day Thur Valley with the Rhine Valley. This association, absent in the current surface morphology, is believed to have been active solely during the Middle Pleistocene.

The correlation of the core with two lines of high-resolution 2D seismic data (acquired during a pre-drill site survey) directly links seismic facies, the petrophysical data of the core (obtained from MSCL- and wireline-logging), and sedimentological properties. This link allowed us to develop a glacial sequence stratigraphy, based on which the overdeepend valley fill could be grouped into three glacial sequences (S1 – S3), enabling a more detailed reconstruction of the glacial advance and retreat history.

Furthermore, integration of the 2D seismic lines with the local geological information (e.g., drill cores, bedrock map, topography, model of the Quaternary sediment cover) has facilitated the establishment of a three-dimensional model of a segment of the Basadingen Trough. This model visualizes the shape of the initial bedrock incision, the multiphase trough-infill architecture, and the emplacement of fluvial channels overlaying the overdeepend basin. This three-dimensional approach overcomes inherent limitations in two-dimensional representations, providing a more accurate mapping of actual geometries. This study thus contributes to the development of a local glaciation model for the Basadingen Trough and a model of subglacial erosion of overdeepened basins in the northern Alpine foreland.

How to cite: Schaller, S., Schuster, B., Beraus, S., Buechi, M. W., Buness, H., and Anselmetti, F. S.: Seismic and core-based glacial sequence stratigraphy of an overdeepened valley fill in northern Switzerland , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8455, https://doi.org/10.5194/egusphere-egu24-8455, 2024.

12:05–12:15
|
EGU24-16490
|
Highlight
|
On-site presentation
Katrina Kremer, Stefano Fabbri, Michael Hilbe, and Flavio S. Anselmetti

Studying the morphology of the landscape is crucial for understanding the processes that shape the Earth’s surface. In subaqueous environments, where direct observations are challenging, bathymetry-derived terrain models are the fundamental form of geomorphological data. Over a century ago, Switzerland initiated systematic bathymetric surveys under the federal "Siegfried Map" project, marking an effort to explore the subaquatic morphology of perialpine lakes. These early studies laid the groundwork for subsequent research on the subaqueous landscape in Switzerland. The early bathymetric surveys in Switzerland focused on documenting the general shape of deep basins and discovering features on lake floors such as channel levee complexes and sublacustrine moraine ridges. These observations formed the basis for early theories on the age of the last glaciation and the existence of turbidity currents in lakes.

Recent advances in multibeam swath bathymetry systems combined with differential GNSS location services dramatically improved survey efficiency as well as spatial and vertical resolution by several magnitudes, generating new findings with every surveyed lake. Apart from the reconnaissance of the overall basin shape, the detailed geomorphologic mapping led to the discovery of various subaquatic features, such as landslides and rockfalls, glacial features, pockmarks, channel and canyon systems, fault structures, and prehistoric and historic human impact. These findings had significant implications for evaluating natural hazards caused by earthquakes, floods, and tsunamis. Detailed glacial imprints became suddenly visible in high-alpine proglacial lakes, revealing the recessional behavior of glaciers. Mapping the source area of mass movements on the lake’s slopes represents the base for understanding lacustrine tsunamis and their modeling. Subaquatic canyons of deltaic systems often extend further into deeper waters than anticipated, promoting accelerated transport of coarse-grained sediments into the deepest parts, typical target areas for major drilling campaigns. Submerged traces of prehistoric settlements revealed unexpected chapters of human activities. Therefore, no drilling effort should be planned without a detailed lake floor map.

In this contribution, we will outline lessons learned from these surveys of 22 lake systems across Switzerland since 2007, summarize key findings, and review the implications of the technology on the limnogeological community. We will also glimpse the future and explore what to expect from ongoing 4D-bathymetric mapping campaigns.

How to cite: Kremer, K., Fabbri, S., Hilbe, M., and Anselmetti, F. S.: A decade of multibeam bathymetric mapping: Implications and lessons learned from (peri-)Alpine lakes in Switzerland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16490, https://doi.org/10.5194/egusphere-egu24-16490, 2024.

12:15–12:30

Posters on site: Mon, 15 Apr, 16:15–18:00 | Hall X1

Display time: Mon, 15 Apr, 14:00–Mon, 15 Apr, 18:00
Chairpersons: Jacob Geersen, Luca Fallati, Andrew Newton
X1.147
|
EGU24-9300
Lasse Sander, Tharaka Yapa, Jasper Hoffmann, and Merten Saathoff

Area-wide hydroacoustic mapping in coastal environments is a time-consuming and cumbersome task due to the limited swath width of most devices, especially in shallow waters. At the same time, these environments hold important functions for coastal ecosystems, are subject to intensive anthropogenic use, and are characterized by dynamic and complex geomorphological interactions of waves, currents, and tides. We presently investigate the seafloor geomorphology of a marine protected area in the eastern North Sea based on a combination of own archived hydroacoustic data, hydrographic single-beam survey data, and fishing vessel position data. The research area is located within 12-nautical miles from the coast, covers approx. 1,200km2, and is characterized by water depths between 12 and 18 m. The topography of the seafloor is relatively flat and dominated by mobile sands although gravel and hard substrate (boulder reef) environments commonly occur throughout the area and are protected under the EU Habitats Directive. The properties and spatial distribution of these habitats remain currently unknown, despite the fact that the area hosts intensive fisheries with bottom-contact gears and one of Europe’s largest marine sand extraction sites. Our results show that the integration of different data sources allows an effective assessment of essential habitat parameters, natural seafloor processes, and anthropogenic stressors. Against this background, a strategy to more closely survey and/or monitor specific areas can be devised in order to better protect seafloor habitats and to mitigate human impacts on coastal ecosystems.  

How to cite: Sander, L., Yapa, T., Hoffmann, J., and Saathoff, M.: Ship-based mapping of protected seafloor habitats and anthropogenic stressors in a very shallow coastal environment: Spatial data integration in a marine protected area offshore Sylt (North Sea), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9300, https://doi.org/10.5194/egusphere-egu24-9300, 2024.

X1.148
|
EGU24-17529
Erwin Heine, Erich Draganits, Dimitris Sakellariou, and Ioannis Morfis

Our understanding and knowledge about Earth´s surface and processes benefitted greatly from the increasing availability of open accessible, large-scale remote sensing topographic data, including GTOPO30 (c. 1 km, 1996), ASTER (c. 30 m, 2009), SRTM 3.0 (c. 30 m, 2014) and TanDEM-X (c. 12 m, 2014). In comparison, the documentation of the sea floor at higher resolutions and/or its accessibility is scarce (e.g. https://emodnet.ec.europa.eu/en/bathymetry, https://www.ngdc.noaa.gov/mgg/bathymetry/lidar.html, Otero & Mytilineou 2022) and vast submarine areas are still a terra incognita. We have carried out a preliminary multi-beam bathymetric survey during 29-31 May 2023 with the 13.4 m research vessel “Alkyon” of the Hellenic Centre for Marine Research, funded by the Cheops Privatstiftung Wien and the Walter Munk Foundation for the Oceans (https://www.waltermunkfoundation.org). The Alkyon was equipped with a hull-mount Teledyne Reson T-50R multibeam echosounder. In total, an area of 26.8 km2 was surveyed west, south and east of Strongylo Island, south of Despotiko Island up to Cape Petalida at the southern tip of Antiparos and especially the Bay of Despotiko, between Despotiko and Antiparos islands with measured depth ranging between -6.7m to -105.7 m below sea-level. The survey aims include the (i) high-resolution documentation of this previously unknown sea-floor, (ii) information concerning local sea-level rise (see Lykousis 2009, Kolaiti & Mourtzas 2020, 2023), (iii) the possible continuation of tectonic features as well as coastal mass-movements investigated above sea-level. Processing and thorough geomorphological analysis of the high resolution bathymetric data provide valuable information on the extend of posidonia meadows on the seafloor  (e.g. Despotiko Bay), evidence for possible palaeo-sealevel indicators (palaeo-coastlines, wave-cut terraces) at various depths, palaeo-valleys and other geomorphological features belonging to the terrestrial landscape that was drowned during the post-glacial sea-level rise, as well as several deposits associated with the mass movements mapped on the adjacent rocky slopes of Strongylo, Despotiko and South Antiparos islands. Marine geological-geophysical research will be continued and complimented with high resolution sub-bottom profiling data and visual observation to unravel the recent geomorphological evolution of the survey area.

Kolaiti, E. & Mourtzas, N. 2020. New insights on the relative sea level changes during the Late Holocene along the coast of Paros Island and the northern Cyclades (Greece). Annals of Geophysics, 63(6), https://doi.org/10.4401/ag-8504

Kolaiti, E. & Mourtzas, N. 2023. Late Holocene relative sea-level changes and coastal landscape readings in the island group of Mykonos, Delos, and Rheneia (Cyclades, Greece). Mediterranean Geoscience Reviews, 5, 99-128. https://doi.org/10.1007/s42990-023-00104-4

Lykousis, V. 2009. Sea-level changes and shelf break prograding sequences during the last 400 ka in the Aegean margins: Subsidence rates and palaeogeographic implications. Continental Shelf Research, 29(16), 2037-2044.

Otero, M. & Mytilineou, C. (eds.) 2022. Deep-sea Atlas of the Eastern Mediterranean Sea: Current knowledge. IUCN-HCMR DeepEastMed Project. IUCN Gland, Málaga, 371 p. https://uicnmed.org/docs/deep-sea-eastern-med/DEEP-SEA-EASTERN-MEDITERRANEAN.pdf

How to cite: Heine, E., Draganits, E., Sakellariou, D., and Morfis, I.: A glimpse below the wine-dark sea: Multi-beam bathymetric survey around Despotiko and Strongylo islands (Cyclades, Greece), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17529, https://doi.org/10.5194/egusphere-egu24-17529, 2024.

X1.149
|
EGU24-12684
|
ECS
Rebecca Englert, Christoph Boettner, Peter Brandt, Matthieu Cartigny, Hao Huang, Gerd Krahmann, Pere Puig, Mischa Schoenke, Christopher Stevenson, Peter Talling, and Sebastian Krastel

Sediment waves are widely observed on the seafloor in a variety of marine environments (e.g., open slope, submarine channels, levees). They are important for understanding marine hazards because they can influence slope stability and be indicators of currents capable of damaging seafloor infrastructure (e.g., telecommunication cables). However, sediment wave dynamics may vary in different settings and several mechanisms have been invoked to explain their formation including gravity-driven (sediment failure, turbidity currents) and oceanographic (bottom currents, internal tides) processes. In this study, we investigate the generation of large unconfined sediment wave fields along the continental slope of the Northwest African margin using an integrated dataset acquired on the R/V Maria S. Merian cruise MSM113. Data collection included direct monitoring of ocean currents and water column properties over sediment wave fields by CTD casts, acoustic water column profiling, and deployment of short-term moorings equipped with velocity (ADCPs), temperature, salinity, and turbidity sensors. Additional datasets such as shallow and multichannel 2D seismic profiles, multibeam bathymetry, gravity cores, and box cores capture the geomorphic, subsurface, and sedimentary characteristics of the seafloor features. Sediment wave fields occur on the mid-lower slope between 600 – 1900 m water depths and are intersected by straight channels up to 2 km wide and 300 m deep. Individual waves have slope-parallel crests, wavelengths between 400 – 2000 m, and wave heights between 6 – 56 m. In subsurface seismic profiles, sediment waves are composed of upslope-stacking reflectors that indicate preferential deposition on their stoss slopes and upslope crest migration. Sediment cores from sediment waves are predominantly composed of bioturbated gradational sequences of mud, sandy mud, muddy sand, and sand that vary depending on location, suggesting a progressive process of differential sedimentation. Intermittent chaotic muddy deposits and sharp-based sand layers represent occasional punctuated flow events. Time series from moored instruments are dominated by strong semidiurnal tidal fluctuations with current velocities up to 0.3 m/s. Water column measurements and acoustic images reveal a stratified water column with wavy interfaces and small-scale fluctuations caused by the passage of internal waves. Collectively, these findings suggest that downslope gravity flows, along-slope currents, and internal tides contribute to sediment transport along the Northwest African margin; although, tide-topographic interactions are the most likely candidate for maintaining sediment waves. Our integrated analysis provides insight into oceanographic processes, which shape the seafloor and transport sediment along ocean margins.

How to cite: Englert, R., Boettner, C., Brandt, P., Cartigny, M., Huang, H., Krahmann, G., Puig, P., Schoenke, M., Stevenson, C., Talling, P., and Krastel, S.: Deciphering the origin of sediment waves along the Northwest African margin through multidisciplinary analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12684, https://doi.org/10.5194/egusphere-egu24-12684, 2024.

X1.150
|
EGU24-2937
|
ECS
Yue Sun, Dawei Wang, Miquel Canals, Tiago M Alves, and Fanchang Zeng

Bedforms are widely distributed within deep-water submarine canyons, which are usually documented by vessel-mounted sensors. Yet, fine-scale geomorphology and shallow structures of bedforms in deep-water submarine canyons remain poorly documented, and understood, because of the insufficient resolution of vessel-based data. This study utilizes high-resolution autonomous underwater vehicle (AUV) dataset combined with intermediate seismic reflection profile and sediment cores to analyze bedform sets along a slope-confined submarine canyon (canyon C14) from the northern South China Sea. A train of crescent-shaped to inverted U-shaped axial steps in plan view are aligned downstream along the canyon thalweg from upper course to lower course. Based on comprehensive analysis of morphologic features, subsurface structures, flow estimates, and potential origins, these steps are likely to be cyclic steps created by supercritical turbidity currents. Sediment cores mainly comprised by silt with minor sand contents further suggesting the shallow canyon sediments probably deposited by diluted turbidity currents. Axial steps (S1-S4) with lower asymmetry and wavelengths in the upper course show an erosional truncation and horizontal to sub-horizontal reflectors draping on the lee side and stoss side, respectively, illustrating the erosional-depositional cyclic steps formed by more confined flow with higher erosion capability due to the narrow canyon (average width of 3.5 km) and steep slope gradient (average of 2.36°). Leaving transition segment, the less confined flow passing through lower course can be subject to wider canyon (average width of 5.5 km) and gently slope gradient (average of 1.2°) that increases the asymmetry and wavelengths of axial steps (S5-S7) and leave backset bed deposits on the stoss sides, probably pointing to the depositional cyclic steps with higher aggradation. Sediment filling, almost padding each cyclic step-associated scour, indicate that the previous-formed bedforms can be reworked by subsequent gravity flows deposits which mainly consist of slope failures-associated mass-transport deposits and turbidity currents deposits. Near the lower end of the canyon, reduction in flow velocity caused by further decrease of slope gradient (average of 1.05°) as the key factor leading to the shift from cyclic steps to furrows, but always under supercritical flow conditions. In this context, a sector of axial channel probably promotes the re-convergence of turbidity currents, resulting in the erosion of fine-grained cohesive deposits on the canyon floor, to form linear furrows within the axial channel. This work provides a good opportunity to investigate the fine-scale morphological features and shallow structures of bedforms in deep-water submarine canyon, and understand their evolution under the influence of canyon topography.

How to cite: Sun, Y., Wang, D., Canals, M., Alves, T. M., and Zeng, F.: Fine-scale seafloor bedform morphology along a slope-confined submarine canyon in the Northern South China Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2937, https://doi.org/10.5194/egusphere-egu24-2937, 2024.

X1.151
|
EGU24-5760
Dag Ottesen and Markus Diesing

Pockmarks are widely distributed in areas with fine-grained layered sediments. We utilised a large multibeam bathymetric dataset covering an area of c. 15,000 km2 of the Norwegian Channel (NC), the western slope and adjacent shelf outside western Norway. Pockmarks were extracted from the bathymetry data with two approaches: by identifying local minima in the bathymetry and by mapping landform types based on geomorphons. While the former approach yielded a point dataset indicating local minimum depths, the latter approach allowed to outline potential pockmarks as polygons based on the landform types of pits and valleys. To increase the reliability of the classification, only pockmark polygons that contained at least one local minimum were subsequently retained. This mainly removed artefacts at the edges of the classified area. Likewise, only those local minima that fell inside a pockmark polygon were retained. Finally, a limited number (<1%) of polygons incorrectly mapped as pockmarks was manually removed. 

Approximately 65,000 pockmarks were automatically detected inside the study area. The highest pockmark densities were located in the western slope of the NC. Here, an extensive pattern of elongated pockmarks was found, indicating strong bottom currents over the area.  

The study area is located in the Viking Graben area with the Øygarden Fault zone to the east. The stratigraphy comprises dipping Mesozoic and Cenozoic clastic sediments over a Paleozoic or crystalline basement. On top of these layers an Upper Regional Unconformity (URU) appears. Above the URU, which forms the base of the NC, flat lying units of glacial (till) and marine sediments are found. Above these layers of late-glacial and Holocene sediments up to a few tens of metres appear.   

The gigantic Troll hydrocarbon field is located in the northern part of the study area, and several studies have documented that there is no active fluid seepage today, so the pockmarks are thought to have been formed by gas hydrate dissociation under/after the last deglaciation. 

How to cite: Ottesen, D. and Diesing, M.: Automatic pockmark detection in the Norwegian Channel , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5760, https://doi.org/10.5194/egusphere-egu24-5760, 2024.

X1.152
|
EGU24-997
|
ECS
Enes Sönmez and Hülya Kurt

Lake Sapanca is located in the Eastern Marmara region of Turkiye and formed as a tectonic lake by the right-lateral strike slip North Anatolian Fault (NAF). Located 33 m above sea level, this tectonic lake has a length of 16 km in the east-west direction and 5 km in the north-south direction. The area in which the lake is located is on the Izmit-Sapanca Corridor, which is bordered by the segments of the northern branch of the NAF, between the Samanlı Mountains to the south and the Kocaeli Peneplain to the north. Multibeam bathymetry and high-resolution seismic data were acquired in the lake as a part of a TUBITAK project (Project No: 117Y130) in August 2018 to determine the structural and stratigraphic elements of the lake. Many pockmark structures, as well as lineaments related to the NAF, were observed on multibeam maps giving cm-scale resolution on the lake bottom. Thus, the effects of NAF in the lake can be better determined depending on the geometrical properties of the pockmarks, more than 300 in number, which are formed due to gas or fluid outflows from the lake-bottom, and their distribution in certain parts of the lake. In order to determine these features of pockmarks, semi-automatic approaches of QGIS and ARCGIS software programs were used and it was observed that the pockmark distribution increased along the lineament direction of the NAF and in the northeast of the lake. Moreover, we conclude that, the consistent orientation of the individual pockmarks may indicate that all pockmarks were formed in a relatively short period of time or that the bottom current regime in the lake has been effective for a long time. 

How to cite: Sönmez, E. and Kurt, H.: An Example of Determining Fault Properties from Morphological Analysis of Pockmarks is Sapanca Lake, Located on the North Anatolian Fault, Turkiye, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-997, https://doi.org/10.5194/egusphere-egu24-997, 2024.

X1.153
|
EGU24-67
|
ECS
Xudong Zhang and Qiang Jin

The Ordovician karst fracture-cave reservoir in Tahe oilfield has strong heterogeneity, and palaeogeomorphology, fault and fracture play important roles in the development of the complexity of the fracture-cave reservoir. Based on rich geological and geophysical data, the influence of faults on the karst reservoir development in carbonatite under different palaeogeomorphic conditions are analyzed through the interpretation of faults and the activity of internal faults in carbonate rocks in different periods, combined with palaeokarst environment and karst products. 
The results show that there are not only strike-slip faults but also an NNE-thrust fault in the sixth and seventh districts of Tahe Oilfield, which control the direction of long-axis anticline in the center of the study area. The anticline becomes an important watershed and most of the surface gullies develop along suitable faults from the top of the anticline to lower areas. According to the karst geomorphology, water system and fracture-cave distribution, landforms are divided into three types: hoodoo-upland, karst depression and karst basin. In the hoodoo-upland, the fracture networks around the faults are dissolved and small and medium-sized fractures develop, and the reservoirs have low filling degree and good performance. In the karst depression, the landforms are transformed by strong water erosion and karst dissolution. The underground rivers and the palaeogeomorphic gullies controlled by high-angle strike-slip faults are relatively straight, while the others controlled by low-angle faults are tortuous. Unfilled caves and intergranular pores in cave fillings are the main reservoir spaces. In karst basin, the Ordovician soluble limestone is covered by stucco deposits, which greatly weakens the karstification. The fractures and caves can develop only along the faults and fractures at a very deep depth. The spatial structure, connectivity, porosity and permeability are complicated. The main reservoir types are fractures, fracture-cave and isolated caves. The filling types are fault karst breccia, giant crystal chemical filling or no filling. Therefore, faults affect the development of reservoir types and fillings under different geomorphology and karst water conditions, which has important guiding significance for the accurate exploration and development of carbonate fracture-cave reservoirs. 

How to cite: Zhang, X. and Jin, Q.: The influence of faults on the development of canbonate karst reservoir in main area of tahe oilfield and its significance in petroleum geology, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-67, https://doi.org/10.5194/egusphere-egu24-67, 2024.

X1.154
|
EGU24-5882
|
ECS
Xun Yang, Xiaoxia Huang, Peng Zhou, and Xiaotong Peng

Diamantina Trench in the southeast Indian Ocean is one of the less unexplored hadal trenches (> 6000 m) of our planet, which develops the second deepest point (Dordrecht Deep, ca. 7019 m depth) in the Indian Ocean. Humans did not visit its ocean floor until the Chinese submersible Fendouzhe reached its deepest point in January 2023. This expedition collected high-resolution multibeam sonar bathymetry data covering about 3000 nautical miles and conducted 28 scientific dives with high-resolution videos and push core sediments of the upper seafloor (max. 40 cm) at a wide range of submarine geomorphology. This study combines these materials to fully assess the morphological variability of the trench and the causative factors and processes determining such characteristics.

Bathymetry data indicate a rugged and complex landscape with various seamounts and debris deposits in the Diamantina Trench which could be classified into three sections. Bounded by the Broken Ridge to the north, the western section contains a series of basins and gorges, as well as parallel intruded ridges (WNW striking). The eastern section shows deeper and steeper slopes compared to the western section. The transitional area of the two sections (the Dordrecht Deep area, 270 km2) is the deepest part of the trench.

Four push core sediment profiles were analyzed from the most west and east locations, the Dordrecht Deep area, and the western trend with foraminifera oozes. Layers of foraminifera and calcareous nannofossil oozes occur at the western section, whereas brownish pelagic sediments with occasionally coarse-grained Fe-Mn nodules develop at the eastern section. The preliminary results of total carbon (TC) and total nitrogen (TN) suggest distinct differences among and within profiles. TC values reach 12% in foraminifera oozes and less than 1.2% in the pelagic sediments. TC values decrease rapidly at the upper 10 cm and remain low (0.1–0.2%) at the lower part in the profiles from the eastern section and Dordrecht Deep area. An analogous trend applies to the TN graphs. The sediment profile from the western section, however, shows decreasing TC and TN values within depth.

This research provides the first knowledge of the highly spatial heterogeneity of submarine geomorphological characteristics and sediment dynamics in the Diamantina Trench. The ongoing measurements of organic matter content, carbon isotope, and grain size from different topographic locations with the potential of dating methods (e.g., 14C and paleontological data) will further aid in reconstructing the spatial variations of paleoenvironmental changes and organic cycling process, as well as in understanding the relationship with tectonic activities and catastrophic events in hadal zones.

How to cite: Yang, X., Huang, X., Zhou, P., and Peng, X.: Submarine geomorphology of the Diamantina Trench (SE Indian Ocean) based on high-resolution multibeam sonar bathymetry and push core sediments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5882, https://doi.org/10.5194/egusphere-egu24-5882, 2024.

X1.155
|
EGU24-10404
Relic glacial landforms in the southern Baltic Sea Basin
(withdrawn after no-show)
Karol Tylmann, Inese Grinbauma, Sarah L. Greenwood, and Jan A. Piotrowski
X1.156
|
EGU24-7149
Gyutae Sim, Jang-Jun Bahk, Junho Jang, Hyesung Kim, Jiwon Jeong, and In-Kwon Um

 This study presents a detailed analysis of grain-size distributions of closely spaced surface sediment samples from the eastern continental margin of the Korean Peninsula off Gangneung and Donghae. This region is characterized by a wave-dominated beach, narrow shelf less than 10 km wide, and slopes with varying gradients ranging from 0.7 to 6.3 degrees. Spatial variations in dominant sediment transport modes were identified using end-member analysis (EMA) of the grain-size distributions.

 The EMA revealed five distinct end-member distributions (EMD) with mean grain sizes of 221.2 μm (EMD1), 89.2 μm (EMD2), 52.4 μm (EMD3), 22.0 μm (EMD4), and 4.5 μm (EMD5), respectively. EMD1, is significant only at two shallow sample sites near the coast, adjacent to the exposed rocky seafloor, indicating an origin from a relict sand during the post-glacial transgression. EMD2 predominates on the shelf and upper slope (40 to 150 m water depths) along the margin, particularly near a local river mouth, suggesting bedload transport of riverine sand by longshore drifts or episodic storm surges. EMD3, potentially representing coarser suspended load, dominates the upper middle slope (200 to 400 m water depths) where the slope gradient is relatively constant, and the isobaths generally run parallel to the shoreline about 15 km apart. EMD4, potentially representing finer suspended load, prevails in the deeper middle slope (400 to 800 m water depths) characterized by varying morphology: narrower and relatively steeper in the northern part, and wider and gentler in the southern part of the margin. The higher proportions of EMD4 extend far offshore in the wider and gentler southern part more than about 35 km, whereas they are limited to within 30 km from the shoreline at the base of the steeper and narrower slope in the northern part. The morphologically controlled EMD4 distributions suggest that a density current was responsible for the offshore fine-grained sediment transport in this margin, rather than diffusion or advection by ocean currents. Finally, the finest EMD5, predominates in the deepest part of the study area, showing no significant further offshore variations, and is interpreted to represent aeolian dust from the Asian inland.

How to cite: Sim, G., Bahk, J.-J., Jang, J., Kim, H., Jeong, J., and Um, I.-K.: Distinguishing sediment transport modes in the eastern continental margin of the Korean Peninsula through end-member analysis of surface sediment grain-size distributions., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7149, https://doi.org/10.5194/egusphere-egu24-7149, 2024.

X1.157
|
EGU24-10932
|
ECS
Andrew Newton, Alexandr Montelli, Christine Batchelor, Benjamin Bellwald, Rachel Harding, Mads Huuse, Julian Dowdeswell, Dag Ottesen, Ståle Johansen, and Sverre Planke

Plio-Pleistocene records of ice-rafted detritus suggest that northwest European ice sheets regularly advanced across palaeo-coastlines. However, while these records are important, they provide only a limited insight on the frequency, extent, and dynamics of the ice sheets that were delivering the detritus. Three-dimensional reflection seismic data of the northwest European glaciated margin have previously documented buried glacial landforms that inform us on these uncertainties. This work combines existing landform records with new seismic geomorphological observations to catalogue landform occurrence along the European glaciated margin and considers how these features relate to ice sheet history. The compilation shows that Early Pleistocene ice sheets regularly advanced onto and across the continental shelves. This is important because Early Pleistocene sea level reconstructions show lower magnitude fluctuations between glacial-interglacial cycles than when compared to the Middle-Late Pleistocene. The potential for more extensive and more frequent Early Pleistocene glaciation provides a possible mismatch with these sea level reconstructions. This evidence is considered with global records of glaciation to contemplate the possible impacts on our wider understanding of Plio-Pleistocene climate changes, in particular how well Early Pleistocene sea level records capture ice sheet volume changes and how quickly large ice sheets waxed and waned. Resolving such issues relies on how well landforms are dated, whether they can be correlated with other proxy datasets of environmental change, and how accurately these proxies reconstruct the magnitudes of past climatic changes. The results leave many more questions about Pleistocene glaciation in Europe unresolved, with significant impacts on our global understanding of how sea level evolved through the Pleistocene and its association with ice sheet development.

How to cite: Newton, A., Montelli, A., Batchelor, C., Bellwald, B., Harding, R., Huuse, M., Dowdeswell, J., Ottesen, D., Johansen, S., and Planke, S.: Glacial seismic geomorphology offshore northwest Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10932, https://doi.org/10.5194/egusphere-egu24-10932, 2024.

X1.158
|
EGU24-8780
Jenny Gales, Robert McKay, Laura De Santis, Michele Rebesco, Jan Sverre Laberg, Denise Kulhanek, Molly patterson, Maxine King, and Sookwan Kim

Antarctica’s continental slopes hold invaluable insights for understanding past climate, ice-sheet dynamics, ocean circulation, erosional and depositional processes, and submarine geohazards over millennial timescales. We present a multidisciplinary dataset from the Ross Sea continental margin, Antarctica from the EUROFLEETS-funded ANTSSS expedition and International Ocean Discovery Program Expedition 374, including core records spanning ~3 Ma, multibeam echosounder and single-channel seismic data and legacy seismic data available through the Antarctic Seismic Data Library System. Here, gully and channel systems occur at the head of the Hillary Canyon, with palaeo-gullies evident in seismic data. New sediment core-seismic correlations show that palaeo-gullies evolved on the Ross Sea continental margin over multiple glacial cycles, filling and reforming associated with glacial advances, cold dense water cascading and other processes. We show multidisciplinary datasets that constrain the signature of down and along-slope processes and examine factors driving their timing, frequency, and impact on gully evolution. We discuss the implications of these findings in relation to Neogene and Quaternary West Antarctic Ice Sheet expansions to the shelf edge.

How to cite: Gales, J., McKay, R., De Santis, L., Rebesco, M., Laberg, J. S., Kulhanek, D., patterson, M., King, M., and Kim, S.: Assessing the influence of climate on Antarctic submarine gully evolution  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8780, https://doi.org/10.5194/egusphere-egu24-8780, 2024.

X1.159
|
EGU24-22420
Hua Huang and Xiaoxia Huang

The submarine channel, also known as submarine canyon, is a narrow and long negative terrain 
that cuts to the shelf or slope and widely developed on the global continental margins. There are 
numerous factors in forming channels, including climate change, topography, sediment sources and 
grain size, and sea level change. However, for high latitudes, especially in the Antarctic region, the 
controlling factors of the formation and evolution of the channel are still poorly understood. In this 
study, we conduct a systematic analysis of the channels in various regions of the Antarctic 
continental margin with the aim of identifying the differences of the channels between the East and 
West Antarctic continental margins and associated controlling factors. We identified 2126 channels 
on the Antarctic continental margin based on IBCSO V2 data (International Bathymetric Chart of 
the Southern Ocean Version 2). The submarine channels and their possible factors in six regions 
(Weddell Sea, Amundsen Sea, Ross Sea, Wilkes Land, Prydz Bay and Dronning Maud Land) are 
statistically analyzed. Quantitative analysis shows that there are obvious differences in the 
geomorphology of submarine channels between the East and West Antarctic continental margin. 
First, consider the differences in the landscape. The shelf is narrower on the east and wider on the 
west. There are prominent troughs running across the broad shelf. West Antarctica has a gentler 
slope gradient than the East Antarctic continental margin, and the ice velocity is much faster. Second, 
submarine channels on the West Antarctica continental margin are longer and wider in cross section, 
with most large-scale channels extending beyond the slope foot, whereas submarine channels on the 
East Antarctica continental margin are deeper but shorter, with fewer channels. We consider that 
shelf width, slope gradient, trough and ice velocity can control sediment transportation and thus 
affect the size of channels. Channels are longer and wider on the margin with wide shelf, prominent 
trough and fast ice velocity, while they are shorter and deeper on the margin with steep slope.

How to cite: Huang, H. and Huang, X.: Quantitative analysis of Antarctic channel distribution and the role played by continental geomorphology in channel evolution, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22420, https://doi.org/10.5194/egusphere-egu24-22420, 2024.

X1.160
|
EGU24-9993
|
ECS
Morgan Vervoort, Despina Kyriakoudi, Ruth Plets, Thomas Mestdagh, Tine Missiaen, and Marc De Batist

During the last 500 000 years, ice sheets occupied parts of the North Sea during three major glaciations. The existence of these ice sheets was accompanied by a large fall in sea level, causing the Southern North Sea to emerge and become isolated from the Atlantic. In this area a complex drainage system was created by river water of the West-European rivers (e.g., Thames, Rhine, Meuse and Scheldt) and glacial meltwater. Furthermore, most offshore studies support the idea of the formation of large proglacial lakes in front of these ice sheets, which may have caused high-magnitude outburst floods at the end of each glacial period. The existence of such a proglacial lake is used in the argument that glacial outburst floods during the Elsterian (500-450 ka) created erosional features still preserved nowadays in the Dover Strait.

A remnant of this large, complex fluvial and glacial drainage system is the (North) Axial Channel, a prominent geomorphological feature seen on the present-day sea floor of the Southern North Sea. Its formation and evolution, however, are still uncertain. Previous studies state that the Axial Channel forms the northern extension of the Lobourg Channel, located in the Strait of Dover, which was formed during Middle Miocene times. Further erosion is assumed to have occurred during the Pliocene and Pleistocene, as sediments within the Murray Pit (located in the Axial Channel, about 100 km northeast of the Lobourg Channel) are assumed to be Early Pliocene, and no Quaternary infilled sediments have been identified. A series of NE-SW oriented scarps are identifiable from bathymetric and seismic reflection data and have been attributed to different Pleistocene incisional events. However, currently only a relative chronology of potential events has been established, with large uncertainties. Understanding the paleogeographic changes that affected the region also increases the knowledge on how early humans may have settled in and/or migrated through the region. 

In the framework of the WALDO project (“Where are All the (proglacial) Lake seDiments in the NOrth Sea Basin?”), a survey has been conducted in October 2023 during which high-resolution geophysical data (multibeam bathymetry and backscatter, acoustic and seismic data) combined with ground-truth data (vibrocores) have been acquired. One of the reflection-seismic grids was conducted ~40 km east of the East of England coast, over the western edge of the North Axial Channel, where also four sediment cores were taken. Here, we present the first interpretation of these new data, which allow us to evaluate, update and improve the relative chronology of the formation of the (North) Axial Channel.  

How to cite: Vervoort, M., Kyriakoudi, D., Plets, R., Mestdagh, T., Missiaen, T., and De Batist, M.: Understanding the paleogeographic evolution of the North Axial Channel, Southern North Sea , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9993, https://doi.org/10.5194/egusphere-egu24-9993, 2024.

X1.161
|
EGU24-10335
|
ECS
Maryse C. Schmidt, Christian Hübscher, Elisabeth Seidel, Jonas Preine, and Benedikt Haimerl

Understanding the course and dynamics of ancient river systems, such as the pre-Odra, is crucial for unravelling the geological history of regions like the southern Baltic Sea, providing valuable insights into the post-glacial evolution of landscapes and riverine processes. We will present marine reflection seismic and acoustic data from three research cruises on the research vessel ALKOR that allow us to investigate the pre-Odra river system in the southern Baltic Sea. Our analysis focuses on the region off the east coast of the island Rügen. This region corresponds to the suspected location of the pre-Odra river system, which was situated during the post-glacial phase approximately 9,000 - 14,500 years BP off Rügen. The seismic reflection data indicate that the sediment infill of the pre-Odra is charged by shallow gas of presumably biogenic origin. Since the seismic gas indicators correspond with the pre-Odra where its location has been determined by previous geological studies, we use gas lineaments as a proxy for the braided paleo-river bed. This study refines and extends the known fluvial extent of the Odra river system by 60 km, tracing it north towards the Tromper Wiek, indicating its terminus in the Baltic Sea close to eastern to Rügen.

How to cite: Schmidt, M. C., Hübscher, C., Seidel, E., Preine, J., and Haimerl, B.: Exploring the Outline of the Pre-Odra River System Through Seismic Reflection Imaging Offshore Rügen Island, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10335, https://doi.org/10.5194/egusphere-egu24-10335, 2024.

X1.162
|
EGU24-7144
Jang-Jun Bahk, Soo-Jin Kim, Chang Hwan Kim, Young Kwan Sohn, and Chan Hong Park

This study examines subaqueous dunes located on the southern periphery of the flat top of Dokdo Seamount at water depths from 120 to 170 meters, where the present ocean currents are incapable of generating such large bedforms. To determine their origin, we conducted a comprehensive analysis of the geomorphic characteristics using high-resolution multi-beam bathymetry and the grain-size characteristics of seafloor sediments. The analysis of the dune spacing in relation to height, as well as their migration and growth pattern, indicates that the Dokdo subaqueous dunes (DSDs) originally formed as aeolian dunes. These were shaped by northerly winter winds that carried sands from the wave erosion surfaces on the northern part of the flat top. The DSDs are believed to have transitioned to their current submerged state without experiencing significant erosion or reactivation. Considering the variations in the Plio-Pleistocene global mean sea level, we estimate the possible subsidence rate of the flat top to be approximately 130 m/myrs, aligning with the conditions required for the formation of DSDs. This study highlights how relict features such as submerged aeolian dunes on seamount summits can be utilized to precisely estimate the subsidence rate of oceanic volcanoes.

How to cite: Bahk, J.-J., Kim, S.-J., Kim, C. H., Sohn, Y. K., and Park, C. H.: Submerged aeolian dunes on the flat-topped Dokdo seamount in the East (Japan) Sea, Korea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7144, https://doi.org/10.5194/egusphere-egu24-7144, 2024.

X1.163
|
EGU24-10619
|
ECS
Vasco Carvalho, Pedro Terrinha, Marta Neres, Antje Voelker, Luís Batista, and Marcos Rosa

The Josephine submarine seamount is located in the NE Atlantic Ocean around 470 km west of the coast of mainland Portugal and 500 km northeast of Madeira Island on the vicinity of the Africa-Eurasia plate boundary. With 47 km in length and 10 km in width, it rises 2500 meters above the adjacent abyssal plains, with its top standing at a depth of 170 m. It is a basaltic submarine seamount that yielded ages of 16.3 ± 0.9Ma to 11.7±0.7Ma (Geldmacher et al. 2006).

Multibeam and backscatter data were acquired to increase our knowledge about the seamount. The backscatter data shows the presence of fine sediment on the eroded top of the seamount, not present in the northern part. The top of the seamount dips gently (~1º) to the northwest allowing the deposition of fine grained sediment down to ~500 m where the seafloor is irregular with slopes dipping between 10⁰ and 15⁰ and the igneous rocks crop out.

Morphologic analysis suggests that the very flat and smooth surface of the southernmost portion of Josephine Seamount has been above sea level and subjected to near coastal erosive processes of areas lying at ~420 m depth. Since the sea level of the last 15 Ma has not been lower than 160 m of the present-day levels (Miller et al. 2020), tectonic and/or erosional processes must have lowered the seamount’s height by at least 260 meters.

Sedimentary rocks were dredged from depths from 480 to 347 m, on the southeastern part of the Josephine seamount and were analyzed for their shape, composition and sedimentary facies. The dredged samples are calciclastic limestone blocks that have a half horn torus shape (donut). Most of the specimens are trespassed by a 3 to 5 cm long conical cavity that developed from the base to the top of each sample.

The rocks consist of 96.6% of foraminifera tests (82.4% planktic and 17.6% benthic), with a very low mineral content. The grains are diagenetically cemented by a calcite matrix (confirmed by EDS analysis). The presence of the planktonic foraminifera species Globorotalia truncatulinoides, whose first occurrence dates of 1.93 Ma (Wade et al., 2011), provides a maximum age of formation, making these sedimentary rocks at least 10 Ma younger than the volcanic rocks that constitute the Josephine Seamount basement. The presence of the benthic foraminifera Lobatula lobatula and Discanomalina semipunctata indicate strong currents that could have contributed to the erosion of the seamount’s top.

This work was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds through the project LISA (https://doi.org/10.54499/PTDC/CTA-GEF/1666/2020).

How to cite: Carvalho, V., Terrinha, P., Neres, M., Voelker, A., Batista, L., and Rosa, M.: Josephine Submarine Seamount: New Insights from multibeam data and seabed sampling for environmental conditions in the Early Quaternary, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10619, https://doi.org/10.5194/egusphere-egu24-10619, 2024.

X1.164
|
EGU24-10732
|
ECS
Maria Cristina Caradonna, Anna Del Ben, Riccardo Geletti, Gian Andrea Pini, Veronica Frisicchio, Gemma Ercilla, and Ferran Estrada

Based on the morpho–bathymetric data coming from the MaGIC project (Marine Geohazards along the Italian Coast) and the high-resolution seismic reflection profiles acquired in 2010 by OGS-Explora, we depict the complex geomorphology of the Gulf of Cagliari and the evolution of the most striking morphosedimentary features developed during the PQ. The seafloor is shaped by the canyon system, the Sarroch and S. Elia-Foxy canyons. The obtained results point that their onset and location do not coincide with paleoincisions formed by the Messinian erosion. The main pathway changes of the Sarroch canyon are conditioned by extensional tectonics of the Campidano Graben and are controlled by the Banghittu High. Cut-and-fill features and infill deposits indicate that retrogressive erosive processes affect the canyon heads and produce landslides. transport deposits in the basin. In fact, four large MTD's have been recognized and analysed within the PQ sequence. They show different seismic facies, from transparent to chaotic, and are locally affected by internal deformational structures which allow us to distinguish the translational and compressional domains. The interplay between the morphosedimentary evolution of the systems canyons and the MTDs are useful to understanding the role played by the downslope channelized and non-channelized sedimentary processes over time and to explore the factors, local and/or global, controlling their occurrence and/or predominance. This analysis of the submarine canyon morphologies and occurrence of MTDs can help evaluate the potential geo-hazard implications of the region.

How to cite: Caradonna, M. C., Del Ben, A., Geletti, R., Pini, G. A., Frisicchio, V., Ercilla, G., and Estrada, F.: Imaging the Plio-Quaternary submarine geomorphological evolution of the Gulf of Cagliari, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10732, https://doi.org/10.5194/egusphere-egu24-10732, 2024.

X1.165
|
EGU24-11305
|
ECS
Veronica Frisicchio, Anna Del Ben, Riccardo Geletti, Maria Cristina Caradonna, Michele Rebesco, and Massimo Bellucci

The Plio-Quaternary sedimentary deposition in the Western Mediterranean Sea was strongly influenced by the Messinian Salinity Crisis (MSC) and by the consequences of the oceanic opening that produced regional fault systems and the following thermal subsidence, still largely active during the Plio-Quaternary (PQ). We analyse the PQ events that occurred in the West Sardinian margin and in the adjacent deep basin by integrating vintage and more recently acquired seismic data, obtaining the currently most complete regional seismic grid in the study area. The base of the PQ (“Ms” reflector) represents the top of the Messinian evaporites in the lower slope and deep basin and the Messinian erosional truncation in the continental upper slope and shelf. Two units have been recognized within the PQ sequence: the low amplitude lower Plio-Quaternary unit (l-PQ) and the high amplitude upper Plio-Quaternary unit (u-PQ), separated by the “A0” reflector, for which we assume an age of 2.6 My (near Quaternary base), through the correlation with the published ECORS profile.

The thermal subsidence, related to the Oligo-Miocene (OM) oceanic opening, produced the increased inclination of the slope and, coupled with the halokinetics of Messinian evaporites, triggered most of the geological processes in the study area. In the lower continental slope, rollover structures are produced by salt sliding, which is related to the increased deepening of the slope, while in the deep basin typical sub-vertical faults developed above the salt diapirs: these processes, that continued throughout the entire PQ slowing down in the Quaternary, influence the thickness and distribution of the PQ sequence. Faults usually act as a preferential path for magma upwelling and gas rising: fault systems developed during the OM produced some large volcanoes at the boundary between slope and deep basin, while on the continental shelf and upper slope the main volcanic buildings are ascribed to the later Pliocene magmatic phase and are related to fault reactivation caused by the PQ thermal subsidence. On the tilted continental outer shelf, OM faults reactivation led to gas rising phenomena and related pockmarks, generated from the Early Pliocene until Present. During the Quaternary, the accentuated tilting of the continental slope triggered erosional processes that led to the formation of three new canyon systems, not inherited by the Messinian erosion as often hypothesized; at the same time, erosion of the onshore area led to a high sediment supply, responsible for the widening of the clinoforms on the inner shelf. In this study we analyse the evolution of the different PQ process that affected the West Sardinian margin and their relationships with previous regional events occurred in all the West Mediterranean Sea: the objective is to create basic information to subsequently compare with other passive margins of the sea.

How to cite: Frisicchio, V., Del Ben, A., Geletti, R., Caradonna, M. C., Rebesco, M., and Bellucci, M.: Plio-Quaternary geological events in the Western Mediterranean Sea: focus on the West Sardinian margin and adjacent oceanic basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11305, https://doi.org/10.5194/egusphere-egu24-11305, 2024.

X1.166
|
EGU24-16357
|
ECS
|
Lotte Verweirder, David Van Rooij, Fred Fourie, Kobus Langedock, Martin White, and Aggeliki Georgiopoulou

The Gollum Channel System is a land-detached large-scale canyon-channel system situated offshore southwest Ireland on the Northeast Atlantic margin. The system is considered to have been inactive since the Last Glacial Maximum (LGM), but newly acquired geophysical seafloor and shallow subsurface data do suggest recent activity. To test the hypothesis of present-day (in)activity, high-resolution side-scan sonar, photography and bathymetry data were collected using an AUV in the upper slope (350-1000 m water depth) section of two of the channels. These data are presented alongside current meter data from a mooring station in one of the channels, which were used for quantification and validation of the AUV results. The presence of current ripples on the channel floor indicates that bottom currents acting here are capable of the (re)distribution of sediments. Additionally, some features in the AUV data are interpreted as patches of cold-water corals that depend on nutrient influx as well as a hard enough substrate to grow on, both of which may be promoted by bottom current activity. The current meter data show bottom currents had an average velocity of 15.1 cm/s and reached a maximum of 53.7 cm/s during the measurement period. Therefore, collectively, these datasets allow interpretation of the channel floor features visible within the AUV data with respect to the current regimes they represent, and vice versa. At present, bottom current activity seems prevalent in the channels, while activity from gravity flows has not been observed.

How to cite: Verweirder, L., Van Rooij, D., Fourie, F., Langedock, K., White, M., and Georgiopoulou, A.: Present-day current activity in an inactive canyon-channel system: the Gollum Channel System offshore southwest Ireland., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16357, https://doi.org/10.5194/egusphere-egu24-16357, 2024.

X1.167
|
EGU24-5004
 Seismic geomorphology of buried channel systems in the western South Huanghai Sea: retrodiction for paleoenvironments
(withdrawn after no-show)
Xianghuai Kong and Jian Liu
X1.168
|
EGU24-10857
Jean-Louis Grimaud, Louison Mercier, Fabien Ors, and Damien Huyghe

Terminal lobes constitute the endmembers of siliciclastic systems. They are of great interest to marine geologists and constitute high-quality reservoirs actively sought out and exploited by the oil and gas industry. The sizes and shapes of lobes vary depending on the type of sedimentary system and the nature of associated gravity flows. Sea bottom topography -induced either by preexisting lobes or mass transport deposition or tectonic deformation- is another important factor controlling lobe morphology. Previous studies carried out on recent systems (based on multibeam bathymetry and 2D/3D seismic data) show different shapes, classically characterized as lobate, but also radial or elongated. Currently, much remains to be known on the relative influences of autocyclic and allocyclic forcings on the internal architecture of lobes.

This study focuses on a better definition of lobe shapes in natural systems to build a ruled -based model of lobes that will later be incorporated into the FLUMY© software. To this end, a database is built based on cases from the literature in various systems (e.g., the Congo, Amazon, Indonesia and East Corsica). We use the classical shape ratios defined by Prélat et al. (2010) as well as a new metric, called the progradation factor (PF), defined as the length ratio between the upstream and downstream segments of lobes (i.e., with respect to their centroids).

Measures of PF were applied at different scales from the bed element to the lobe complex. Independently of the sedimentary system type, three different shapes of lobate bodies were identified: (i) a “classical” lobate shape -wider downstream- when PF > 1.15, (ii) lobes that are wider upstream when PF < 0.85 and, (iii) an elliptical shape when 0.85 ≤ PF ≤1.15. The classical lobate shape is interpreted as marking the absence of topographic confinement. Elliptical lobes occur mainly during maximum and minimum of progradation/retrogradation cycles. Lobes that are wider upstream result from topographic confinement and are mainly deposited at the end of retrogradation cycles. Finally, plotting thickness vs area allows identifying semi-confined lobes as a third category located between confined and unconfined lobes. This category follows a linear trend and exhibits a minimum thickness of 20 m.

How to cite: Grimaud, J.-L., Mercier, L., Ors, F., and Huyghe, D.: Assessing the dynamics of turbiditic terminal lobes: a geometrical approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10857, https://doi.org/10.5194/egusphere-egu24-10857, 2024.

X1.169
|
EGU24-6154
|
ECS
Yun-Ting Tsai and Steven Yueh Jen Lai

Submarine braided channels, driven by turbidity currents, have been revealed on several deep-sea fans, displaying similar morphological features to fluvial braided rivers. Past experimental studies on submarine braided channels have shown that active braiding intensity (BIA) is proportional to fixed confinement width, dimensionless stream power (ω*) and dimensionless sediment-stream power (ω**). However, the field-scale submarine braided channels may not restrict to a fixed confinement width (B); instead, the confinement shape often exhibits gradual widening or narrowing. In this study, we use physical experiments to investigate the influence of confinement shapes and inflow-to-sediment discharge ratios (Qin/Qs) on the evolution of submarine braided channels. In the experiments, three confinement shapes were simulated: diamond, hourglass, and reversed trapezoid. The experimental results show that the BIA is strongly proportional to the varying confinement width, i.e., increasing confinement width facilitates the degree of braiding; decreasing confinement width suppresses the degree of braiding. The measured BIA is proportional to both the ω* and ω**. Additionally, increasing Qin/Qs causes a slightly decrease of BIA. The measured active width (Wa) is proportional to the bulk change (Vbulk). These relations all agree with the published trends of both fluvial and submarine braided channels. For the geometric properties of sandbars, the measured sandbar aspect ratio and sandbar compactness ratio remain constant regardless the change of confinement shape or Qin/Qs. Finally, the experimental results may aid our understanding to the morphological evolution of submarine braided channels and provide insights to the stacking patterns of hydrocarbon reservoirs.

 

Keywords: submarine braided channels, turbidity current, physical experiment, confinement shape, active braiding intensity

How to cite: Tsai, Y.-T. and Lai, S. Y. J.: Submarine braided channels in response to channel confinement shapes and inflow-to-sediment discharge ratios: Insights from physical experiments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6154, https://doi.org/10.5194/egusphere-egu24-6154, 2024.

X1.170
|
EGU24-22150
|
ECS
Aurora Machado Garcia, Benjamin Bellwald, Sverre Planke, Ingrid Anell, Reiden Myklebust, and Ivar Midtkandal

We document for the first time the extensive occurrence of “feather-like channels” in the 19000-year-old glacigenic submarine strata in the North Sea Fan (NSF). We describe these features in the uppermost deposits of the NSF, predominantly on the surface that marks the end of the period of shelf-edge glaciation, using over 14000 km2 of high-resolution 3D seismic reflection data (vertical resolution of 2m and bin size of 6.25 x 18.75m). 

These channels are a few 10’s of meters wide and depths on the limit of seismic resolution (~2 m). They lack clear cross sections, mostly presenting as disruptions in the otherwise readily traceable reflections, which make them easier to identify in amplitude maps rather than structure maps and seismic profiles. These “feather” channels occur exclusively in association with larger, deeper channels. The “feathers” diverge from the margins of the main channel, forming an obtuse angle with the flow direction of the main channel, becoming progressively sub-parallel further downstream, similar to a bird’s feather, with the divergence from the main channel axis in the downstream direction. They run for varied distances, as short as a few 100’s of meters and up to 7 kilometers. It’s also important to highlight that they occur extensively throughout the surface, with a small spacing of 10’s of meters between each other.

Similar features have been described by others as lineations formed at the base of debris flows. This was credited to circular depressions found at the end of such lineations and the fan shape that those features would create at the end of a main channel body. This description is clearly different from what we have described in this study, where both circular depressions and fan-shaped terminations were absent. Here, we interpret them as the record of overbank flows from the main channel, due to their geometry and dimensions, representing the large pulses meltwater coming from the shelf.

Our investigation into the “feather-like channels’’ reveals a unique seismic geomorphology, in a well understood palaeogeographical setting. The exclusive association of these channels with larger, deeper counterparts, their small spacing, and varied distances emphasize their pervasive nature. This research not only refines our understanding of submarine sedimentary dynamics, but also highlights the indispensable role of high-resolution 3D seismic data in understating the subsurface.

How to cite: Machado Garcia, A., Bellwald, B., Planke, S., Anell, I., Myklebust, R., and Midtkandal, I.: Feather-like submarine channels: a unique imprint of overbank flows imaged by 3D seismic data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22150, https://doi.org/10.5194/egusphere-egu24-22150, 2024.