Exploring Extreme Climate Transitions in Kerala, India: A Multi-Decadal Investigation (1980-2020)
- APJ Abdul Kalam Technological University, TKM College of Engineering, Kollam, Civil Engineering, Kollam, India (meeragmohan90@gmail.com)
In response to the escalating challenges posed by climate change, this study addresses the critical need to understand the dynamics of extreme climatic events within Kerala, India. Focusing on the years spanning 1980 to 2020, specifically during 12 identified drought years within, we meticulously examine transitions between droughts and floods, recognizing the profound impact on the region's hydrological landscape. With a strategic selection of 17 stream gauge locations covering high, mid, and low lands, representing varied climatic zones, our investigation delves into the intricacies of climatic shifts. The study deals with the analysis of discernible trend of increasing frequency in extreme events over time, by employing a thorough approach incorporating statistical significance testing, frequency analysis of extreme events, and lag analysis and then to unravel the intricate relationships between streamflow and precipitation during distinct phases such as pre-drought, drought, and post-drought years. The research findings illustrate an erratic pattern in the occurrence of contradictory extremes, such as transitions between drought and flood. The timing and duration of these transitions are also found to be inconsistent, showing varying periods in-between and occasionally consecutive occurrences of the same extremes, which in turn highlights the complexity and irregularity of extreme event patterns present in Kerala. Notably, our analysis reveals a concerning trend where the frequency of extreme events is progressively increasing, indicating a higher occurrence of climatic extremes over the years. Specifically, from 2015 to 2020, the observed transitions are striking, in the case that, the total incidences of heavy rain (64.5-115.5 mm per day) were 360 across 10 months in 2015 whereas in the succeeding year (2016), followed by an unprecedented 100-year return period drought. The year 2017 again saw incidences of heavy rain climbing to a total of 360 events. Astonishingly, the anomaly continued with the recurrence of devastating floods in 2018, which persisted for a broadened period up to 2020. While extending the future dynamics for the coming decade, the study predicted the frequency and patterns of extreme events in Kerala by incorporating future General Circulation Model (GCM) precipitation data. The results indicate a substantial increase in the frequency of extreme events, coupled with the anticipated emergence of prolonged dry periods in Kerala's future hydroclimatic landscape. The integration of this data into the analysis enabled the estimation of variations in future streamflow, providing valuable insights into the evolving climatic scenario. This forward-looking approach allowed for the inference of potential patterns of extreme events over the past decade in Kerala, contributing to proactive strategies for climate resilience and adaptive water resource management in the region.
How to cite: G Mohan, M., Geetha Raveendran Nair, A. N., and Sankaran, A.: Exploring Extreme Climate Transitions in Kerala, India: A Multi-Decadal Investigation (1980-2020), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10718, https://doi.org/10.5194/egusphere-egu24-10718, 2024.