EGU24-10889, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-10889
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Archaean record of the Singhbhum Craton, India: new insights from greenstone belts and cratonic cover sequences. 

Jaganmoy Jodder1,2, Axel Hofmann3, Marlina Elburg3, and Rebeun Ngobeli3
Jaganmoy Jodder et al.
  • 1Centre for Planetary Habitability (PHAB), Department of Geosciences, University of Oslo, Norway (jaganmoyj@gmail.com)
  • 2Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
  • 3Department of Geology, University of Johannesburg, South Africa

In recent times, the Archaean geological record of the Singhbhum Craton has been scrutinized regarding early Earth crustal processes, tectonics, magmatic-detrital zircon geochronology, early life research, and Fe-Mn mineralization associated with volcano-sedimentary successions. However, many of these studies are hampered by a lack of a basic stratigraphic framework of the various litho-stratigraphic units, complicating our understanding of the overall Archaean geology of the Singhbhum Craton. Here, we share first-hand information on the Palaeoarchaean greenstone belts and Meso-Neoarchaean intracontinental volcano-sedimentary sequence of the Singhbhum Craton.

New magmatic zircon U-Pb ages determined from felsic volcanic rocks of the Badampahar Group are represented by their crystallization age at c. 3.51 Ga. Intrusive granitoids exposed in the Daitari and Gorumahisani greenstone belts yield crystallization ages ranging from 3.38 to 3.29 Ga and having inherited zircons being 3.58, 3.55, and 3.51 Ga old. A granitoid intrusive into iron formation of the Gorumahisani greenstone belt has an age of c. 3.29 Ga.  Detrital zircons recovered from Koira Group sandstone intercalated with iron formation yield a maximum depositional age of 2.63 Ga. 

We demonstrate that Palaeoarchaean greenstones exposed in the northern and southern parts of the Singhbhum Craton consists largely of sub-marine mafic-ultramafic volcanic rocks interlayered with minor felsic volcanic and chemical sedimentary rocks. Importantly, the ca. 3.51 Ga felsic volcanic rocks from the Badampahar Group permit comparison with co-eval felsic volcanic units reported from the lower part of the Onverwacht, Nondweni, Warrawoona groups of the Kaapvaal and Pilbara cratons. Otherwise, new age constraints of the Koira Group allow for better correlations with Meso-Neoarchaean cratonic cover successions elsewhere. 

How to cite: Jodder, J., Hofmann, A., Elburg, M., and Ngobeli, R.: Archaean record of the Singhbhum Craton, India: new insights from greenstone belts and cratonic cover sequences. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10889, https://doi.org/10.5194/egusphere-egu24-10889, 2024.