EGU24-10977, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-10977
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Long-term changes of the geomagnetic field: recent progress, challenges and applications 

Sanja Panovska
Sanja Panovska
  • Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ, 2.3 Geomagnetism, Potsdam, Germany (sanja.panovska@gfz-potsdam.de)

The Earth's magnetic field provides protection against highly energetic particles from the Sun and outer space. Throughout geological epochs, the time-varying geomagnetic field exhibited periods of dramatic changes, both in intensity and direction. Recent data compilations of paleomagnetic records enable us to model the long-term, global evolution of the geomagnetic field and better understand the internal dynamics and underlying phenomena. Until now, global reconstructions of the geomagnetic field cover the past 100,000 years and the Matuyama-Brunhes reversal. A few models are available for the Laschamps excursion 41,000 years ago, a period marked by globally low intensity and a complex, multipolar field structure. These models enable the identification of robust characteristics of the geomagnetic field's behavior during this extreme event.

The spatial and temporal changes influence the shielding and cosmogenic nuclide production rates. In general, the higher the field intensity, the larger the shielding and the fewer cosmogenic nuclides are produced in the atmosphere. Variations in the production rates of cosmogenic radionuclides reconstructed from ice cores and sediments provide an independent proxy of paleointensity variations. On the one hand, models constrained by paleomagnetic data can be validated through comparison with actual measurements from ice and marine cores. On the other hand, the cosmogenic radionuclide data can be jointly inverted with the paleomagnetic data to build multi-proxy models of the geomagnetic field. Cosmogenic radionuclide records also serve as a proxy for solar variability and extreme solar events. Global geomagnetic field reconstructions are used to assess the space weather effects during an extreme solar storm event over the past millennia.

How to cite: Panovska, S.: Long-term changes of the geomagnetic field: recent progress, challenges and applications , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10977, https://doi.org/10.5194/egusphere-egu24-10977, 2024.