EGU24-11088, updated on 08 Mar 2024
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Pathways of Glacial Meltwater from the Hudson Strait into the North Atlantic Ocean: Insights from Eddy-Resolving Model Simulations

Sara Martin Alis1,2, Olivier Marchal2, Alan Condron2, and Sean (Si-Yuan) Chen3
Sara Martin Alis et al.
  • 1University of Vigo, Vigo, Spain (
  • 2Woods Hole Oceanographic Institution, MA, United States
  • 3MIT-WHOI Joint Program in Oceanography, MA, United States

A long-standing question in paleoclimate research concerns the fate and consequences of the glacial water released into the ocean from the Laurentide Ice Sheet (LIS) during the last deglaciation. In this presentation, we will describe detailed simulations of the pathways of glacial meltwater released from the LIS which have been obtained from an eddy-resolving, regional configuration of the general circulation model of the MIT (MITgcm) coupled with a sea-ice model. Emphasis will be placed on glacial meltwater discharged from Hudson Strait into the Labrador Sea and on its interaction with the North Atlantic Current (NAC). Our regional configuration of the MITgcm represents the glacial Atlantic between 34.5oN and 67oN at a horizontal resolution of 1/20o, with 61 vertical levels (21 levels in the upper 100 m), and with continental shelves removed (sea level lowered by 130 m). The relatively fine spatial grid permits the simulation of the mesoscale eddy field and of the baroclinic structure of the buoyant current produced by the meltwater inflow. Surface forcing is provided by the atmospheric conditions during the last glacial maximum which have been simulated by a global climate model (Community Climate System Model v.3). Our preliminary results show that the meltwater current from Hudson Strait flows to the SE along the continental slope of Labrador and Newfoundland and sheds anticyclonic eddies which carry offshore meltwater and are entrained by the NAC near the Grand Banks. In turn, the meltwater influences the NAC through its effect on seawater density, suggesting a new mechanism by which glacial water fluxes may change large-scale circulation in the North Atlantic. In our presentation, attention will be paid on the influence of the meltwater on the strength and structure of the NAC near and downstream of the Grand Banks.

How to cite: Martin Alis, S., Marchal, O., Condron, A., and Chen, S. (.-Y.: Pathways of Glacial Meltwater from the Hudson Strait into the North Atlantic Ocean: Insights from Eddy-Resolving Model Simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11088,, 2024.