EGU24-11410, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-11410
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Case Study How to Teach Elements of Meteorology from Kindergarten to School-Living Examination via Harmonised Curriculum

Beáta Molnár1,2, Tamás Weidinger3, Tünde Vargová1, Agnesa Mihályová1, and Péter Tasnádi3
Beáta Molnár et al.
  • 1Spojená škola Reformovanej kresťanskej cirkvi, Rimavská Sobota, Slovakia
  • 2Physics education PhD Program, Doctoral School of Physics, Eötvös Loránd University, Budapest, Hungary
  • 3Department of Meteorology, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary

Atmospheric phenomena have an important influence on our everyday lives. Observation and understanding of those phenomena are a fundamental goal of education and their use in various science subjects gives enormous motivation to students to learn sciences. Weather-related knowledge should appear at all levels of education in a systematically constructed way. There is a particularly good opportunity to develop the conceptual system in a gradual way where several age groups of students could be taught in the same school, creating a cyclical curriculum.

We present here an example of this educational process, which was conducted in a southern Slovakian Hungarian school, which provides education from kindergarten up to the school-leaving examination. The educational institution has three departments: a kindergarten, a primary, and a secondary school, encompassing the full spectrum of public education, aside from technical training.

This poster is going to demonstrate how meteorological knowledge can be introduced on different levels, and how the curriculum of each level, which is built upon each other, could be evolved via the expansion of the contents and deepening of the conceptual system. Since the study of meteorology is typically interdisciplinary, its teaching, taking into consideration the students’ characteristics of their age groups, requires the harmonization of the knowledge of different subjects.

Four levels of education were observed: kindergarten (ages 2 to 6), primary school (ages 7 to 10), lower secondary school (ages 11 to 15), and higher secondary school (ages 16 to 19). The following issues were investigated: i) the requirements of the state-issued curriculum, ii) the educational practice of our school, and iii) where the educational practice could be supplemented so that students understood the weather phenomena and the laws of physics behind them.

In kindergarten, children aged 2-6 can start to observe and record the current weather using pictograms. It is during this period that they first encounter the different types of water: ice, water and vapour. During the preschool years, they are introduced to changes of state, such as melting, freezing, and evaporation.

In primary school multiday observations can be made by the pupils, but this is more of a supplement to the learning process started in kindergarten. This concerns the changes and the different states of matter and also the types of precipitation. In language lessons, folk wisdom relating to the weather could be taught.

In secondary school, the tools for collecting meteorological data, the formation process for given types of precipitation, and the causes of airflow are introduced. In the optional courses, students familiarise themselves with phase diagrams, the process of cloud formation, the effects of air pollution, and the analysis of weather reports.

Finally, it should be emphasized that the analysis of historical meteorological records could strengthen the students’ connection to their homeland and lead to the development of cultural awareness within the region.

During the teaching process, the curriculum has been continuously improved according to the MER method. We shall currently report on our experiences regarding the first version.

How to cite: Molnár, B., Weidinger, T., Vargová, T., Mihályová, A., and Tasnádi, P.: Case Study How to Teach Elements of Meteorology from Kindergarten to School-Living Examination via Harmonised Curriculum, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11410, https://doi.org/10.5194/egusphere-egu24-11410, 2024.