EGU24-11462, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-11462
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Seasonal effects of wind-blown dust emissions on size-resolved aerosol acidity over the U.S

Stylianos Kakavas, Evangelia Siouti, Athanasios Nenes, and Spyros Pandis
Stylianos Kakavas et al.
  • (steliosk22@gmail.com)

Wind-blown dust emitted by the Earth’s surface is one of the major sources of dust emissions especially in non-vegetated areas like deserts and can affect both climate and human health. Acidity is an important property of atmospheric aerosols impacting a series of related processes and can be affected by these emissions of alkaline dust. In this work, we use a wind-blown dust emissions model to quantify the wind-blown dust emissions over the continental United States during February and July 2017. The modeling domain covers a region of 4752 × 2952 km2 including northern Mexico and southern Canada with a horizontal grid resolution of 36 × 36 km. Then, the hybrid version of aerosol dynamics in PMCAMx (Particulate Matter Comprehensive Air-quality Model with Extensions) chemical transport model is used to simulate size-resolved aerosol acidity. In this version of PMCAMx for fine (PM1) particles, bulk equilibrium is assumed, while for larger particles a dynamic model is used to simulate the mass transfer to each size section. Two cases of simulations are performed. The first is the base case simulation and includes the wind-blown dust emissions for both months. The second one neglects these emissions in order to study their effects on aerosol acidity during a wintertime and a summertime period as a function of particle size and altitude.

How to cite: Kakavas, S., Siouti, E., Nenes, A., and Pandis, S.: Seasonal effects of wind-blown dust emissions on size-resolved aerosol acidity over the U.S, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11462, https://doi.org/10.5194/egusphere-egu24-11462, 2024.