EGU24-11485, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-11485
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Summer drought predictability in the Mediterranean region in seasonal forecasts

Giada Cerato1, Katinka Bellomo1,2, and Jost von Hardenberg1,2
Giada Cerato et al.
  • 1Politecnico di Torino, Department of Environment, Land, and Infrastructure Engineering, Italy (giada.cerato@polito.it)
  • 2Consiglio Nazionale delle Ricerche, Institute of Atmospheric Sciences and Climate, Turin, Italy

The Mediterranean region has been identified as an important climate change hotspot, over the 21st century both air temperature and its extremes are projected to rise at a rate surpassing that of the global average and a significant decrease of average summer precipitation is projected, particularly for the western Mediterranean. On average, Mediterranean droughts have become more frequent and intense in recent years and are expected to become more widespread in many regions. These prolonged dry spells pose a substantial threat to agriculture and impact several socio-economic sectors. In this context, long-range weather forecasting has emerged as a promising tool for seasonal drought risk assessment. However, the interpretation of the forecasting products is not always straightforward due to their inherent probabilistic nature. Therefore, a rigorous evaluation process is needed to determine the extent to which these forecasts provide a fruitful advantage over much simpler forecasting systems, such as those based on climatology. 

In this study, we use the latest version of ECMWF’s seasonal prediction system (SEAS5) to understand its skill in predicting summer droughts. The Standardized Precipitation Evapotranspiration Index (SPEI) aggregated over different lead times is employed to mark below-normal dryness conditions in August. We use a comprehensive set of evaluation metrics to gain insight into the accuracy, systematic biases, association, discrimination and sharpness of the forecast system. Our findings reveal that up to 3 months lead time, seasonal forecasts show stronger association and discrimination skills than the climatological forecast, especially in the Southern Mediterranean, although the prediction quality in terms of accuracy and sharpness is limited. On the other hand, extending the forecast range up to 6 months lead time dramatically reduces its predictability skill, with the system mostly underperforming elementary climatological predictions. 

This approach is then extended to examine the full ensemble of seasonal forecasting systems provided by the Copernicus Climate Change Service (C3S) to test their skill in predicting droughts. Our findings can help an informed use of seasonal forecasts of droughts and the development of related climate services.

How to cite: Cerato, G., Bellomo, K., and von Hardenberg, J.: Summer drought predictability in the Mediterranean region in seasonal forecasts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11485, https://doi.org/10.5194/egusphere-egu24-11485, 2024.