CL4.3 | Seasonal to multi-decadal climate predictions and their applications
EDI
Seasonal to multi-decadal climate predictions and their applications
Co-organized by AS1/ESSI4/HS13/NH11/NP5/OS1
Convener: Panos J. Athanasiadis | Co-conveners: André Düsterhus, Julia Lockwood, Bianca Mezzina, Lisa DegenhardtECSECS, Leon Hermanson, Leonard Borchert
Orals
| Fri, 19 Apr, 08:30–12:25 (CEST), 14:00–15:35 (CEST)
 
Room 0.31/32
Posters on site
| Attendance Thu, 18 Apr, 16:15–18:00 (CEST) | Display Thu, 18 Apr, 14:00–18:00
 
Hall X5
Posters virtual
| Attendance Thu, 18 Apr, 14:00–15:45 (CEST) | Display Thu, 18 Apr, 08:30–18:00
 
vHall X5
Orals |
Fri, 08:30
Thu, 16:15
Thu, 14:00
This session covers climate predictions from seasonal to multi-decadal timescales and their applications. Continuing to improve such predictions is of major importance to society. The session embraces advances in our understanding of the origins of seasonal to decadal predictability and of the limitations of such predictions, as well as advances in improving the forecast skill and reliability and making the most of this information by developing and evaluating new applications and climate services. The session welcomes contributions from dynamical as well as statistical predictions (including machine learning methods) and their combination. This includes predictions of climate phenomena, including extremes and natural hazards, from global to regional scales, and from seasonal to multi-decadal timescales ("seamless predictions"). The session also covers physical processes relevant to long-term predictability sources (e.g. ocean, cryosphere, or land) and predictions of large-scale atmospheric circulation anomalies associated to teleconnections as well as observational and emergent constraints on climate variability and predictability. Also relevant is the time-dependence of the predictive skill and windows of opportunity. Analysis of predictions in a multi-model framework and innovative ensemble-forecast initialization and generation strategies are another focus of the session. The session pays particular attention to innovative methods of quality assessment and verification of climate predictions, including extreme-weather frequencies, post-processing of climate hindcasts and forecasts, and quantification and interpretation of model uncertainty. We particularly invite contributions presenting the use of seasonal-to-decadal predictions for assessing risks from natural hazards, adaptation and further applications.

Orals: Fri, 19 Apr | Room 0.31/32

Chairpersons: Julia Lockwood, Panos J. Athanasiadis, Leon Hermanson
08:30–08:35
08:35–08:40
08:40–08:50
|
EGU24-4538
|
ECS
|
On-site presentation
Sebastiano Roncoroni, Panos Athanasiadis, and Silvio Gualdi

Spring frost events occurring after budburst of grapevines can damage new shoots, disrupt plant growth and cause large economic losses to the viticultural sector. Frost protection practices encompass a variety of vineyard management actions across timescales, from seasonal to decadal and beyond. The cost-effectiveness of such measures depends on the availability of accurate predictions of the relevant climate hazards at the appropriate timescales.

In this work, we present a statistical downscaling method which predicts variations in the frequency of occurrence of spring frost events in the important winemaking region of Catalunya at the seasonal timescale. The downscaling method exploits the seasonal predictability associated with the predictable components of the atmospheric variability over the Euro-Atlantic region, and produces local predictions of frost occurrence at a spatial scale relevant to vineyard management.

The downscaling method is designed to address the specific needs highlighted by a representative stakeholder in the local viticultural sector, and is expected to deliver an actionable prototype climate service. The statistical procedure is developed in perfect prognosis mode: the method is trained with large-scale reanalysis data against a high-resolution gridded observational reference, and validated against multi-model seasonal hindcast predictions.

Our work spotlights the potential benefits of transferring climate predictability across spatial scales for the design and provision of usable climate information, particularly regarding extremes.

How to cite: Roncoroni, S., Athanasiadis, P., and Gualdi, S.: Statistical downscaling of extremes in seasonal predictions - a case study on spring frosts for the viticultural sector, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4538, https://doi.org/10.5194/egusphere-egu24-4538, 2024.

08:50–09:00
|
EGU24-11485
|
ECS
|
On-site presentation
Giada Cerato, Katinka Bellomo, and Jost von Hardenberg

The Mediterranean region has been identified as an important climate change hotspot, over the 21st century both air temperature and its extremes are projected to rise at a rate surpassing that of the global average and a significant decrease of average summer precipitation is projected, particularly for the western Mediterranean. On average, Mediterranean droughts have become more frequent and intense in recent years and are expected to become more widespread in many regions. These prolonged dry spells pose a substantial threat to agriculture and impact several socio-economic sectors. In this context, long-range weather forecasting has emerged as a promising tool for seasonal drought risk assessment. However, the interpretation of the forecasting products is not always straightforward due to their inherent probabilistic nature. Therefore, a rigorous evaluation process is needed to determine the extent to which these forecasts provide a fruitful advantage over much simpler forecasting systems, such as those based on climatology. 

In this study, we use the latest version of ECMWF’s seasonal prediction system (SEAS5) to understand its skill in predicting summer droughts. The Standardized Precipitation Evapotranspiration Index (SPEI) aggregated over different lead times is employed to mark below-normal dryness conditions in August. We use a comprehensive set of evaluation metrics to gain insight into the accuracy, systematic biases, association, discrimination and sharpness of the forecast system. Our findings reveal that up to 3 months lead time, seasonal forecasts show stronger association and discrimination skills than the climatological forecast, especially in the Southern Mediterranean, although the prediction quality in terms of accuracy and sharpness is limited. On the other hand, extending the forecast range up to 6 months lead time dramatically reduces its predictability skill, with the system mostly underperforming elementary climatological predictions. 

This approach is then extended to examine the full ensemble of seasonal forecasting systems provided by the Copernicus Climate Change Service (C3S) to test their skill in predicting droughts. Our findings can help an informed use of seasonal forecasts of droughts and the development of related climate services.

How to cite: Cerato, G., Bellomo, K., and von Hardenberg, J.: Summer drought predictability in the Mediterranean region in seasonal forecasts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11485, https://doi.org/10.5194/egusphere-egu24-11485, 2024.

09:00–09:10
|
EGU24-17585
|
On-site presentation
Kai Lochbihler, Ana Lopez, and Gil Lizcano

Accurate forecasts of the natural resources of renewable energy production have become not only a valuable but a crucial tool for managing the associated risks of specific events, such as wind droughts. Wind energy, alongside with solar power, now provide a substantial part to the renewable energy share of the global energy production and growth in this sector will most likely further increase. The naturally given fluctuations of wind resources, however, pose a challenge for maintaining a stable energy supply, which, at the end of the chain, can have an impact on the energy market prices.
Operational short-term forecasting products for the wind energy sector (multiple days) are already commonly available and seasonal to sub seasonal forecasting solutions (multiple months) can provide valuable skill and are gaining in popularity. On the other side of the spectrum, typically on a time scale of multiple decades, we find risk assessment based on climate change projections. In between the long and short term time scales, however, there is a gap that still needs to be filled to achieve seamless prediction of risks that are relevant for the energy sector: decadal predictions.

Here, we present the results of an evaluation study of a multi-model decadal prediction ensemble (DCPP) for a selection of wind development regions in Europe. The evaluation is based on multiple decades long hindcasts and carried out with a focus on the skill of predicting specific event types of wind resource availability in a probabilistic context, alongside with basic deterministic skill measures. We further investigate specific event constellations and their large-scale drivers that, in combination, can provide windows of opportunity with enhanced predictive skill. We conclude with a discussion on how this hybrid approach can be used to potentially increase not only forecast skill but also the trust of the end user.

How to cite: Lochbihler, K., Lopez, A., and Lizcano, G.: Skill of wind resource forecasts on the decadal time scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17585, https://doi.org/10.5194/egusphere-egu24-17585, 2024.

09:10–09:20
|
EGU24-16366
|
ECS
|
On-site presentation
Dario Nicolì, Silvio Gualdi, and Panos Athanasiadis

The Mediterranean region is highly sensitive to climate change, having experienced an intense warming and drying trend in recent decades, primarily due to the increased concentrations of anthropogenic greenhouse gases. In the context of decision-making processes, there is a growing interest in understanding the near-term climate evolution of this region.

In this study, we explore the climatic fluctuations of the Mediterranean region in the near-term range (up to 10 years ahead) using two different products: projections and decadal predictions. The former are century-scale climate change simulations initialized from arbitrary model states to which were applied anthropogenic and natural forcings. A major limitation of climate projections is their limited information regarding the current state of the Earth’s climate system. Decadal climate predictions, obtained by constraining the initial conditions of an ensemble of model simulations through a best estimate of the observed climate state, provide a better understanding of the next-decade climate and thus represent an invaluable tool in assisting climate adaptation.

Using retrospective forecasts from eight decadal prediction systems contributing to the CMIP6 Decadal Climate Prediction Project (CMIP6 DCPP) and the corresponding ensemble of non-initialized projections, we compare the capabilities of the state-of-the-art climate models in predicting future climate changes of the Mediterranean region for some key quantities so as to assess the added value of initialization. 

Beyond the contribution of external forcings, the role of internal variability is also investigated since part of the detected predictability arises from internal climate variability patterns affecting the Mediterranean. The observed North Atlantic Oscillation, the dominant climate variability pattern in the Euro-Atlantic domain, as well as its  impact on wintertime precipitation over Europe are well reproduced by decadal predictions, especially over the Mediterranean, outperforming projections. We also apply a sub-sampling method to enhance the respective signal-to-noise ratio and consequently improve precipitation skill over the Mediterranean.

How to cite: Nicolì, D., Gualdi, S., and Athanasiadis, P.: Decadal predictions outperform projections in forecasting winter precipitation over the Mediterranean region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16366, https://doi.org/10.5194/egusphere-egu24-16366, 2024.

09:20–09:30
|
EGU24-14688
|
ECS
|
On-site presentation
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse

Storm surges and elevated water levels regularly challenge coastal protection and inland water management along the low-lying coastline of the German Bight. Skillful seasonal-to-decadal (S2D) predictions of the local storm surge climate would be beneficial to stakeholders and decision makers in the region. While storm activity has recently been shown to be skillfully predictable on a decadal timescale with a global earth system model, surge modelling usually requires very fine spatial and temporal resolutions that are not yet present in current earth system models. We therefore propose an alternative approach to generating S2D predictions of the storm surge climate by training a neural network on observed water levels and large-scale atmospheric patterns, and apply the neural network to the available model output of a S2D prediction system. We show that the neural-network-based translation from large-scale atmospheric fields to local water levels at the coast works sufficiently well, and that several windows of predictability for the German Bight surge climate emerge on the S2D scale.

How to cite: Krieger, D., Brune, S., Baehr, J., and Weisse, R.: Exploring ML-based decadal predictions of the German Bight storm surge climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14688, https://doi.org/10.5194/egusphere-egu24-14688, 2024.

09:30–09:40
|
EGU24-10574
|
Highlight
|
Virtual presentation
Nick Dunstone, Doug Smith, Adam Scaife, Leon Hermanson, Andrew Colman, and Chris Folland

Global mean surface temperature is the key metric by which our warming climate is monitored and for which international climate policy is set. At the end of each year the Met Office makes a global mean temperature forecast for the coming year. Following on from the new record 2023, we predict a high probability of another record year in 2024 and a 35% chance of exceeding 1.5 C above pre-industrial. Whilst a one-year temporary exceedance of 1.5 C would not constitute a breech of the Paris Agreement target, our forecast highlights how close we are now to breeching this target. We show that our 2024 forecast can be largely explained by the combination of the continuing warming trend of +0.2 C/decade and the lagged warming affect of a strong tropical Pacific El Nino event. We further highlight 2023 was significantly warmer than forecast and that much of this warming signal came from the southern hemisphere and requires further understanding.

How to cite: Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Colman, A., and Folland, C.: Will 2024 be the first year above 1.5 C?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10574, https://doi.org/10.5194/egusphere-egu24-10574, 2024.

09:40–09:50
|
EGU24-12969
|
ECS
|
On-site presentation
Patricia DeRepentigny, François Massonnet, Roberto Bilbao, and Stefano Materia

The Earth has warmed significantly over the past 40 years, and the fastest rate of warming has occurred in and around the Arctic. The warming of northern high latitudes at a rate of almost four times the global average (Rantanen et al., 2022), known as Arctic amplification, is associated with sea ice loss, glacier retreat, permafrost degradation, and expansion of the melting season. Since the mid-2000s, summer sea ice has exhibited a rapid decline, reaching record minima in September sea ice area in 2007 and 2012. However, after the early 2010s, the downward trend of minimum sea ice area appears to decelerate (Swart et al., 2015; Baxter et al., 2019). This apparent slowdown and the preceding acceleration in the rate of sea ice loss are puzzling in light of the steadily increasing rate of greenhouse gas emissions of about 4.5 ppm yr−1 over the past decade (Friedlingstein et al., 2023) that provides a constant climate forcing. Recent studies suggest that low-frequency internal climate variability may have been as important as anthropogenic influences on observed Arctic sea ice decline over the past four decades (Dörr et al., 2023; Karami et al., 2023). Here, we investigate how unusual this decade-long pause in Arctic summer sea ice decline is within the context of internal climate variability. To do so, we first assess how rare this is deceleration of Arctic sea ice loss is by comparing it to trends in CMIP6 historical simulations. We also use simulations from the Decadal Climate Prediction Project (DCPP) contribution to CMIP6 to determine if initializing decadal prediction systems from estimates of the observed climate state substantially improves their performance in predicting the slowdown in Arctic sea ice loss over the past decade. As the DCPP does not specify the data or the methods to be used to initialize forecasts or how to generate ensembles of initial conditions, we also assess how different formulations affect the skill of the forecasts by analyzing differences between models. This work provides an opportunity to attribute this pause in Arctic sea ice retreat to interannual internal variability or radiative external forcings, something that observation analysis alone cannot achieve.

How to cite: DeRepentigny, P., Massonnet, F., Bilbao, R., and Materia, S.: How unusual is the recent decade-long pause in Arctic summer sea ice retreat?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12969, https://doi.org/10.5194/egusphere-egu24-12969, 2024.

09:50–10:10
|
EGU24-19251
|
solicited
|
Highlight
|
Virtual presentation
Hazel Thornton

Accurate forecasts of the climate of the coming season and years are highly desired by many sectors of society. The skill of near-term climate prediction in winter in the North Atlantic and European region has improved over the last decade associated with larger ensembles, improving models and boosting of the prediction signal using intelligent post processing. International collaboration has improved the availability of forecasts and promoted the uptake of forecasts by different sectors. However, significant challenges remain, including summer prediction, understanding the risk of extremes within a season, multi-seasonal extremes and how best to post process the forecasts to aid decision making. This talk will summarise recent near-term climate prediction research activities at the UK Met Office and will detail our experience of providing such forecasts to the energy and water sectors.  

How to cite: Thornton, H.: The opportunities and challenges of near-term climate prediction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19251, https://doi.org/10.5194/egusphere-egu24-19251, 2024.

Coffee break
Chairpersons: Bianca Mezzina, Panos J. Athanasiadis, Leonard Borchert
10:45–10:50
10:50–11:00
|
EGU24-15358
|
Virtual presentation
Iuliia Polkova and the Co-Authors

Atlantic meridional overturning circulation (AMOC) is one of the mechanisms for climate predictability and one of the properties that decadal climate predictions are attempting to predict. The starting point for AMOC decadal predictions is sensitive to the underlying data assimilation and/or initialization procedure. This means that different choices during the data assimilation procedure (e.g., assimilation method, assimilation window, data sources, resolution, nudging terms and strength, full field vs anomaly initialization/assimilation, etc) can result in a different mean and even variability of reconstructed ocean circulation. How coherent the AMOC initial states should be among the CMIP-like decadal prediction experiments? How good in general should the initial AMOC be for decadal predictions? And do initialization issues of the ocean circulation influence the prediction skill of other variables that are of interest for application studies? These are the questions that we were attempting to address in our study, where we analyzed twelve decadal prediction systems from the World Meteorological Organization Lead Centre for Annual-to-Decadal Climate Prediction project. We identify that the AMOC initialization influences the quality of predictions of the subpolar gyre (SPG). When predictions show a large initial error in their AMOC, they usually have low skill for predicting the internal variability of the SPG five years after the initialization.

How to cite: Polkova, I. and the Co-Authors: Initialization shock in the ocean circulation reduces skill in decadal predictions of the North Atlantic subpolar gyre, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15358, https://doi.org/10.5194/egusphere-egu24-15358, 2024.

11:00–11:10
|
EGU24-4873
|
ECS
|
On-site presentation
Yashas Shivamurthy, Subodh Kumar Saha, Samir Pokhrel, Mahen Konwar, and Hemant Kumar Chaudhari

Skillful prediction of seasonal monsoons has been a challenging problem since the 1800s. However, significant progress has been made in Indian summer monsoon rainfall prediction in recent times, with skill scores reaching 0.6 and beyond, surpassing the estimated predictability limits. This phenomenon leads to what is known as the “Signal-to-noise Paradox.” To investigate this paradox, we utilized 52 ensemble member hindcast runs spanning 30 years.

Through the application of ANOVA and Mutual Information methods, we estimate the predictability limit globally. Notably, for the boreal summer rainfall season, the Indian subcontinent exhibited the paradox, among several other regions, while the Equatorial Pacific region, despite demonstrating high prediction skill, does not have the Signal-to-Noise paradox. We employed a novel approach to understand how sub-seasonal variability and their projection in association with predictors are linked to the paradoxical behavior of seasonal prediction skill.

We propose a new method to estimate predictability limits that is free from paradoxical phenomena and shows much higher seasonal predictability. This novel method provides valuable insights into the complex dynamics of monsoon prediction, thereby creating opportunities for expanded research and potential improvements in seasonal forecasting skill in the coming years.

How to cite: Shivamurthy, Y., Saha, S. K., Pokhrel, S., Konwar, M., and Chaudhari, H. K.: Why does the Signal-to-Noise Paradox Exist in Seasonal Climate Predictability?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4873, https://doi.org/10.5194/egusphere-egu24-4873, 2024.

11:10–11:20
|
EGU24-9100
|
On-site presentation
Bo Christiansen, Shuting Yang, and Annika Drews
There is an ongoing discussion about the contributions from forced and natural sources to the Atlantic Multi-decadal Variability (AMV).  As the AMV influences the general climate in large regions, this question has important consequences for climate predictions on decadal timescales and for a robust estimation of the influence of climate forcings.

Here, we investigate the Atlantic Multi-decadal Variability (AMV) in observations and in a large CMIP6 historical climate model ensemble. We compare three different definitions of the AMV aimed at extracting the variability intrinsic to the Atlantic region. These definitions are based on removing from the Atlantic temperature the non-linear trend, the part congruent to the global average, or the part congruent to the multi-model ensemble mean of the global average. The considered AMV definitions agree on the well-known low-frequency oscillatory variability in observations, but show larger differences for the models. In general, large differences between ensemble members are found.

We estimate the forced response in the AMV as the mean of the large multi-model ensemble.  The forced response resembles the observed low-frequency oscillatory variability for the detrended AMV definition, but this definition is also the most inefficient in removing the forced global mean signal. The forced response is very weak for the other definitions and only few of their individual ensemble members show oscillatory variability and, if they do, not with the observed phase.

The observed spatial temperature pattern related to the AMV is well captured for all three AMV definitions, but with some differences in the spatial extent. The observed instantaneous connection between NAO and AMV is well represented in the models for all AMV definitions. Only non-significant evidence of NAO leading the AMV on decadal timescales is found.

How to cite: Christiansen, B., Yang, S., and Drews, A.: The Atlantic Multi-decadal Variability in observations and in a large historical multi-model ensemble: Forced and internal variability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9100, https://doi.org/10.5194/egusphere-egu24-9100, 2024.

11:20–11:30
|
EGU24-3190
|
ECS
|
On-site presentation
Jamie Atkins, Jonathan Tinker, Jennifer Graham, Adam Scaife, and Paul Halloran

The European North-West shelf seas (NWS) support economic interests and provide environmental services to several adjacent populous countries. Skilful seasonal forecasts of the NWS would be useful to support decision making. Here, we quantify the skill of an operational large-ensemble ocean-atmosphere coupled dynamical forecasting system (GloSea), as well as a benchmark persistence forecasting system, for predictions of NWS sea surface temperature (SST) at 2-4 months lead time in winter and summer. We also identify sources of- and limits to NWS SST predictability with a view to what additional skill may be available in the future. We find that GloSea NWS SST skill is generally high in winter and low in summer. Persistence of anomalies in the initial conditions contributes substantially to predictability. GloSea outperforms simple persistence forecasts, by adding atmospheric variability information, but only to a modest extent. Where persistence is low – for example in seasonally stratified regions – both GloSea and persistence forecasts show lower skill. GloSea skill can be degradeded by model deficiencies in the relatively coarse global ocean component, which lacks a tidal regime and likely fails to properly fine-scale NWS physics. However, using “near perfect atmosphere” tests, we show potential for improving predictability of currently low performing regions if atmospheric circulation forecasts can be improved, underlining the importance of development of atmosphere-ocean coupled models for NWS seasonal forecasting applications.

How to cite: Atkins, J., Tinker, J., Graham, J., Scaife, A., and Halloran, P.: Seasonal forecasting of the European North-West shelf seas: limits of winter and summer sea surface temperature predictability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3190, https://doi.org/10.5194/egusphere-egu24-3190, 2024.

11:30–11:40
|
EGU24-1940
|
ECS
|
Virtual presentation
Xiaoqin Yan, Youmin Tang, and Dejian Yang

Sea surface temperature (SST) changes in the Mediterranean Sea have profound impacts on both the Mediterranean regions and remote areas. Previous studies show that the Mediterranean SST has significant decadal variability that is comparable with the Atlantic multidecadal variability (AMV). However, few studies have discussed the characteristics and sources of the decadal predictability of Mediterranean SST based on observations. Here for the first time we use observational datasets to reveal that the decadal predictability of Mediterranean SST is contributed by both external forcings and internal variability for both annual and seasonal means, except that the decadal predictability of the winter mean SST in the eastern Mediterranean is mostly contributed by only internal variability. Besides, the persistence of the Mediterranean SST is quite significant even in contrast with that in the subpolar North Atlantic, which is widely regarded to have the most predictable surface temperature on the decadal time scale. After the impacts of external forcings are removed, the average prediction time of internally generated Mediterranean SST variations is more than 10 years and closely associated with the multidecadal variability of the Mediterranean SST that is closely related to the accumulated North Atlantic Oscillation forcing.

How to cite: Yan, X., Tang, Y., and Yang, D.: Study of the Decadal Predictability of Mediterranean Sea Surface Temperature Based on Observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1940, https://doi.org/10.5194/egusphere-egu24-1940, 2024.

11:40–11:50
|
EGU24-10551
|
ECS
|
Virtual presentation
Swen Brands, Ezequiel Cimadevilla, and Jesús Fernández

The inter-annual to multi-decadal variability of recurrent, synoptic-scale atmospheric circulation patterns in the Northern Hemisphere extratropics, as represented by the Jenkinson-Collison classification scheme, is explored in reanalysis data spanning the entire 20th century, and in global climate model (GCM) data from the historical, AMIP and DCPP experiments conducted within the framework of CMIP6. The aim of these efforts is to assess the effect of coupled vs. uncoupled and initialised vs. non-initialized GCM simulations in reproducing the observed low-frequency variability of the aforementioned circulation patterns.

Results reveal that the observed annual counts of typical recurrent weather patterns, such as cyclonic or anticyclonic conditions and also situations of pronounced advection, exhibit significant oscillations on multiple time-scales ranging between several years and several decades. The period of these oscillations, however, is subject to large regional variations. This is in line with earlier studies suggesting that the extratropical atmospheric circulation’s low frequency variability is essentially unforced, except in the Pacific-North American sector where the forced variability is enhanced due to ENSO teleconnections. Neither the periods obtained from historical nor those obtained from AMIP experiments align with observations. Likewise, not even the periods obtained from different runs of the same GCM and experiment correspond to each other. Thus, in an non-initialized model setup, ocean-atmosphere coupling or the lack thereof essentially leads to the same results. Whether initialization and/or augmenting the ensemble size can improve these findings, will also be discussed.

Acknowledgement: This work is part of project Impetus4Change, which has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No 101081555.

How to cite: Brands, S., Cimadevilla, E., and Fernández, J.: Low-frequency variability of synoptic-scale atmospheric circulation patterns in the Northern Hemisphere extratropics and associated hindcast skill of decadal forecasting systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10551, https://doi.org/10.5194/egusphere-egu24-10551, 2024.

11:50–12:10
|
EGU24-9274
|
ECS
|
solicited
|
Highlight
|
On-site presentation
Sabine Bischof, Robin Pilch Kedzierski, Martje Hänsch, Sebastian Wahl, and Katja Matthes

The recent severe European summer heat waves of 2015 and 2018 co-occurred with cold subpolar North Atlantic (NA) sea surface temperatures (SSTs). However, a significant connection between this oceanic state and European heat waves was not yet established.

We investigate the effect of cold subpolar NA SSTs on European summer heat waves using two 100-year long AMIP-like model experiments: one that employs the observed global 2018 SST pattern as a boundary forcing and a counter experiment for which we removed the negative NA SST anomaly from the 2018 SST field, while preserving daily and small-scale SST variabilities. Comparing these experiments, we find that cold subpolar NA SSTs significantly increase heat wave duration and magnitude downstream over the European continent. Surface temperature and circulation anomalies are connected by the upper-tropospheric summer wave pattern of meridional winds over the North Atlantic European sector, which is enhanced with cold NA SSTs. Our results highlight the relevance of the subpolar NA region for European summer conditions, a region that is marked by large biases in current coupled climate model simulations.

How to cite: Bischof, S., Pilch Kedzierski, R., Hänsch, M., Wahl, S., and Matthes, K.: The Role of the North Atlantic for Heat Wave Characteristics in Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9274, https://doi.org/10.5194/egusphere-egu24-9274, 2024.

12:10–12:25
Lunch break
Chairpersons: André Düsterhus, Lisa Degenhardt, Leon Hermanson
14:00–14:05
14:05–14:25
|
EGU24-9905
|
ECS
|
solicited
|
On-site presentation
Ronan McAdam, César Peláez Rodríguez, Felicitas Hansen, Jorge Pérez Aracil, Antonello Squintu, Leone Cavicchia, Eduardo Zorita, Sancho Saldez-Sanz, and Enrico Scoccimarro

As a consequence of limited reliability of dynamical forecast systems, particularly over Europe, efforts in recent years have turned to exploiting the power of Machine Learning methods to extract information on drivers of extreme temperature from observations and reanalysis. Meanwhile, the diverse impacts of extreme heat have driven development of new indicators which take into account nightime temperatures and humidity. In the H2020 CLimate INTelligence (CLINT) project, a feature selection framework is being developed to find the combination of drivers which provides optimal seasonal forecast skill of European summer heatwave indicators. Here, we present the methodology, its application to a range of heatwave indicators and forecast skill compared to existing dynamical systems. First, a range of (reduced-dimensionality) drivers are defined, including k-means clusters of variables known to impact European summer (e.g. precipitation, sea ice content), and more complex indices like the NAO and weather regimes. Then, these drivers are used to train machine learning based prediction models, of varying complexity, to predict seasonal indicators of heatwave occurrence and intensity. A crucial and novel step in our framework is the use of the Coral Reef Optimisation algorithm, used to select the variables and their corresponding lag times and time periods which provide optimal forecast skill. To maximise training data, both ERA5 reanalysis and a 2000-year paleo-simulation are used; the representation of heatwaves and atmospheric conditions are validated with respect to ERA5. We present comparisons of forecast skill to the dynamical Copernicus Climate Change Service seasonal forecasts systems. The differences in timing, predictability and drivers of daytime and nighttime heatwaves across Europe are highlighted. Lastly, we discuss how the framework can easily be adapted to other extremes and timescales.



How to cite: McAdam, R., Peláez Rodríguez, C., Hansen, F., Pérez Aracil, J., Squintu, A., Cavicchia, L., Zorita, E., Saldez-Sanz, S., and Scoccimarro, E.: Optimization-based driver detection and prediction of seasonal heat extremes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9905, https://doi.org/10.5194/egusphere-egu24-9905, 2024.

14:25–14:35
|
EGU24-19297
|
ECS
|
Virtual presentation
Rendani Mbuvha and Zahir Nikraftar

This study focuses on applying machine learning techniques to bias-correct the seasonal temperature forecasts provided by the Copernicus Climate Change Service (C3S) models. Specifically, we employ bias correction on forecasts from five major models: UK Meteorological Office (UKMO), Euro-Mediterranean Center on Climate Change (CMCC), Deutscher Wetterdienst (DWD), Environment and Climate Change Canada (ECCC), and Meteo-France. Our primary objective is to assess the performance of our bias correction model in comparison to the original forecast datasets. We utilise temperature-based indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) to evaluate the effectiveness of the bias-corrected seasonal forecasts. These indices served as valuable metrics to gauge the predictive capability of the models, especially in forecasting natural cascading hazards such as wildfires, droughts, and floods. The study involved an in-depth analysis of the bias-corrected forecasts, and the derived indices were crucial in understanding the models' ability to predict temperature-related extreme events. The results of this research contribute valuable information for decision-making and planning across various sectors, including disaster risk management and environmental protection. Through a comprehensive evaluation of machine learning-based bias correction techniques, we enhance the accuracy and applicability of seasonal temperature forecasts, thereby improving preparedness and resilience to climate-related challenges. 

How to cite: Mbuvha, R. and Nikraftar, Z.: Machine Learning Approaches to Improve Accuracy in Extreme Seasonal Temperature Forecasts: A Multi-Model Assessment , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19297, https://doi.org/10.5194/egusphere-egu24-19297, 2024.

14:35–14:45
|
EGU24-15709
|
ECS
|
On-site presentation
Marie-Lou Bachelery, Julien Brajard, Massimiliano Patacchiola, and Noel Keenlyside

Extreme Atlantic and Benguela Niño events continue to significantly impact the tropical Atlantic region, with far-reaching consequences for African climate and ecosystems. Despite attempts to forecast these events using traditional seasonal forecasting systems, success remains low, reinforcing the growing idea that these events are unpredictable. To overcome the limitations of dynamical prediction systems, we introduce a deep learning-based statistical prediction model for Atlantic and Benguela Niño events. Our convolutional neural network (CNN) model, trained on 90 years of reanalysis data incorporating surface and 100m-averaged temperature variables, demonstrates the capability to forecast the Atlantic and Benguela Niño indices with lead times of up to 3-4 months. Notably, the CNN model excels in forecasting peak-season events with remarkable accuracy extending up to 5 months ahead. Gradient sensitivity analysis reveals the ability of the CNN model to exploit known physical precursors, particularly the connection to equatorial dynamics and the South Atlantic Anticyclone, for accurate predictions of Benguela Niño events. This study challenges the perception of the Tropical Atlantic as inherently unpredictable, underscoring the potential of deep learning to enhance our understanding and forecasting of critical climate events. 

How to cite: Bachelery, M.-L., Brajard, J., Patacchiola, M., and Keenlyside, N.: Predicting Atlantic and Benguela Niño events with deep learning , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15709, https://doi.org/10.5194/egusphere-egu24-15709, 2024.

14:45–14:55
|
EGU24-10539
|
ECS
|
On-site presentation
Qinxue Gu, Liwei Jia, Liping Zhang, Thomas Delworth, Xiaosong Yang, Fanrong Zeng, and Shouwei Li

Long-term sea level rise and multiyear-to-decadal sea level variations pose substantial risks of flooding and erosion in coastal communities. The North Atlantic Ocean and the U.S. East Coast are hotspots for sea level changes under current and future climates. Here, we employ a machine learning technique, a self-organizing map (SOM)-based framework, to systematically characterize the North Atlantic sea level variability, assess sea level predictability, and generate sea level predictions on multiyear-to-decadal timescales. Specifically, we classify 5000-year North Atlantic sea level anomalies from the Seamless System for Prediction and EArth System Research (SPEAR) model control simulations into generalized patterns using SOM. Preferred transitions among these patterns are further identified, revealing long-term predictability on multiyear-to-decadal timescales related to shifts in Atlantic meridional overturning circulation (AMOC) phases. By combining the SOM framework with “analog” techniques based on the simulations and observational/reanalysis data, we demonstrate prediction skill of large-scale sea level patterns comparable to that from initialized hindcasts. Moreover, additional source of short-term predictability is identified after the exclusion of low-frequency AMOC signals, which arises from the wind-driven North Atlantic tripole mode triggered by the North Atlantic Oscillation. This study highlights the potential of machine learning methods to assess sources of predictability and to enable efficient, long-term climate prediction.

How to cite: Gu, Q., Jia, L., Zhang, L., Delworth, T., Yang, X., Zeng, F., and Li, S.: Exploring multiyear-to-decadal North Atlantic sea level predictability using machine learning and analog methods, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10539, https://doi.org/10.5194/egusphere-egu24-10539, 2024.

14:55–15:05
|
EGU24-9690
|
ECS
|
On-site presentation
|
Luca Famooss Paolini, Paolo Ruggieri, Salvatore Pascale, Erika Brattich, and Silvana Di Sabatino

Several studies show that the occurrence of summer extreme temperatures over Europe is increased since the middle of the twentieth century and is expected to further increase in the future due to global warming (Seneviratne et al., 2021). Thus, predicting heat extremes several months ahead is crucial given their impacts on socio-economic and environmental systems.

In this context, state-of-the-art dynamical seasonal prediction systems (SPSs) show low skills in predicting European heat extremes on seasonal timescale, especially in central and northern Europe (Prodhomme et al., 2022). However, recent studies have shown that our skills in predicting extratropical climate can be largely improved by subsampling the dynamical SPS ensemble with statistical post-processing techniques (Dobrynin et al., 2022).

This study assesses if the seasonal prediction skill of summer extreme temperatures in Europe in the state-of-the-art dynamical SPSs can be improved through subsampling. Specifically, we use a multi-model ensemble (MME) of SPSs contributing to the Copernicus Climate Change Service (C3S), analysing di hindcast period 1993—2016. The MME is subsampled by retaining a subset of members that predict the phase of the North Atlantic Oscillation (NAO) and the Eastern Atlantic (EA), typically linked to summer extreme temperatures in Europe. The subsampling relies on spring predictors of the weather regimes and thus allows us to retain only those ensemble members with a reasonable representation of summer heat extreme teleconnections.

Results show that by retaining only those ensemble members that accurately represent the NAO phase, it not only enhances the seasonal prediction skills for the summer European climate but also leads to improved predictions of summer extreme temperatures, especially in central and northern Europe. Differently, selecting only those ensemble members that accurately represent the EA phase does not improve either the predictions of summer European climate or the predictions of summer extreme temperatures. This can be explained by the fact that the C3S SPSs exhibits deficiencies in accurately representing the summer low-frequency atmospheric variability.

Bibliography

Dobrynin, M., and Coauthors, 2018: Improved Teleconnection-Based Dynamical Seasonal Predictions of Boreal Winter. Geophysical Research Letters, 45 (8), 3605—3614, https://doi.org/10.1002/2018GL07720

Prodhomme, C., S. Materia, C. Ardilouze, R. H. White, L. Batté, V. Guemas, G. Fragkoulidis, and J. Garcìa-Serrano, 2022: Seasonal prediction of European summer heatwaves. Climate Dynamics, 58 (7), 2149—2166, https://doi.org/10.1007/s00382-021-05828-3

Seneviratne, S., and Coauthors, 2021: Weather and Climate Extreme Events in a Changing Climate, chap. 11, 1513—1766. Cambridge University Press, https://doi.org/10.1017/9781009157896.013

How to cite: Famooss Paolini, L., Ruggieri, P., Pascale, S., Brattich, E., and Di Sabatino, S.: Hybrid statistical-dynamical seasonal prediction of summer extreme temperatures over Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9690, https://doi.org/10.5194/egusphere-egu24-9690, 2024.

15:05–15:15
|
EGU24-19229
|
ECS
|
On-site presentation
|
Aude Carreric, Pablo Ortega, Vladimir Lapin, and Francisco Doblas-Reyes

Seasonal prediction is a field of research attracting growing interest beyond the scientific community due to its strong potential to guide decision-making in many sectors (e.g. agriculture and food security, health, energy production, water management, disaster risk reduction) in the face of the pressing dangers of climate change.

Among the various techniques being considered to improve the predictive skill of seasonal prediction systems, increasing the horizontal resolution of GCMs is a promising avenue. There are several indications that higher resolution versions of the current generation of climate models might improve key air-sea teleconnections, decreasing common biases of global models and improving the skill to predict certain regions at seasonal scales, e.g. in tropical sea surface temperature.

In this study, we analyze the differences in the predictive skill of two different seasonal prediction systems, based on the same climate model EC-Earth3 and initialized in the same way but using two different horizontal resolutions. The standard (SR) and high resolution (HR) configurations are based on an atmospheric component, IFS, of ~100 km and ~40 km of resolution respectively and on an ocean component, NEMO3.6, of ~100 km and ~25 km respectively. We focus in particular on the Tropical Pacific region where statistically significant improvements are found in HR with respect to SR for predicting ENSO and its associated climate teleconnections. We explore some processes that can explain these differences, such as the simulation of the tropical ocean mean state and atmospheric teleconnections between the Atlantic and Pacific tropical oceans. 

A weaker mean-state bias in the HR configuration, with less westward extension of ENSO-related SST anomalies, leads to better skill in ENSO regions, which can also be linked to better localization of the atmospheric teleconnection with the equatorial Atlantic Ocean. It remains to be assessed if similar improvements are consistently identified for HR versions in other forecast systems, which would prompt their routine use in seasonal climate prediction.

How to cite: Carreric, A., Ortega, P., Lapin, V., and Doblas-Reyes, F.: Comparing the seasonal predictability of Tropical Pacific variability in EC-Earth3 at two different horizontal resolutions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19229, https://doi.org/10.5194/egusphere-egu24-19229, 2024.

15:15–15:25
|
EGU24-8028
|
ECS
|
On-site presentation
Rémy Bonnet, Julien Boé, and Emilia Sanchez

The implementation of adaptation policies requires seamless and relevant information on the evolution of the climate over the next decades. Decadal climate predictions are subject to drift because of intrinsic model errors and their skill may be limited after a few years or even months depending on the region. Non-initialized ensembles of climate projections have large uncertainties over the next decades, encompassing the full range of uncertainty attributed to internal climate variability. Providing the best climate information over the next decades is therefore challenging. Recent studies have started to address this challenge by constraining uninitialized projections of sea surface temperature using decadal predictions or using a storyline approach to constrain uninitialized projections of the Atlantic Meridional Overturning Circulation using observations. Here, using a hierarchical clustering method, we select a sub-ensemble of non-initialized climate simulations based on their similarity to observations. Then, we try to further refine this sub-ensemble of trajectories by selecting a subset based on its consistency with decadal predictions. This study presents a comparison of these different methods for constraining surface temperatures in the North-Atlantic / Europe region over the next decades, focusing on CMIP6 non-initialized simulations.

How to cite: Bonnet, R., Boé, J., and Sanchez, E.: Constraining near to mid-term climate projections by combining observations with decadal predictions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8028, https://doi.org/10.5194/egusphere-egu24-8028, 2024.

15:25–15:35
|
EGU24-7134
|
ECS
|
On-site presentation
Ankit Agarwal and Ravikumar Guntu

Compound Dry and Hot Extremes (CDHE) have an adverse impact on socioeconomic factors during the Indian summer monsoon, and a future exacerbation is anticipated. The occurrence of CDHE is influenced by teleconnections, which play a crucial role in determining its likelihood on a seasonal scale. Despite the importance, there is a lack of studies unravelling the teleconnections of CDHE in India. Previous investigations specifically focused on teleconnections between precipitation, temperature, and climate indices. Hence, there is a need to unravel the teleconnections of CDHE. This study presents a framework combining event coincidence analysis (ECA) with complexity science. ECA evaluates the synchronization between CDHE and climate indices. Subsequently, complexity science is utilized to construct a driver-CDHE network to identify the critical drivers of CDHE. A logistic regression model is employed to evaluate the proposed drivers' effectiveness. The occurrence of CDHE exhibits distinct patterns from July to September when considering intra-seasonal variability. Our findings contribute to the identification of drivers associated with CDHE. The primary driver for Eastern, Western India and Central India is the indices in the Pacific Ocean and Atlantic Ocean, respectively, followed by the indices in the Indian Ocean. These identified drivers outperform the traditional Niño 3.4-based predictions. Overall, our results demonstrate the effectiveness of integrating ECA and complexity science to enhance the prediction of CDHE occurrences.

How to cite: Agarwal, A. and Guntu, R.: Towards the Predictability of Compound Dry and Hot Extremes through Complexity Science, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7134, https://doi.org/10.5194/egusphere-egu24-7134, 2024.

Posters on site: Thu, 18 Apr, 16:15–18:00 | Hall X5

Display time: Thu, 18 Apr 14:00–Thu, 18 Apr 18:00
Chairpersons: Lisa Degenhardt, Bianca Mezzina, Panos J. Athanasiadis
X5.149
|
EGU24-9049
Rashed Mahmood, Markus G. Donat, Pablo Ortega, and Francisco Doblas-Reyes

Adaptation to climate change requires accurate and reliable climate information on decadal and multi-decadal timescales. Such near-term climate information is obtained from future projection simulations, which are strongly affected by uncertainties related to, among other things, internal climate variability. Here we present an approach to constrain variability in future projection simulations of the coupled model intercomparison project phase 6 (CMIP6). The constraining approach involves phasing in the simulated with the observed climate state by evaluating the area-weighted spatial pattern correlations of sea surface temperature (SST) anomalies in individual members and observations. The constrained ensemble, based on the top ranked members in terms of pattern correlations with observed SST anomalies, shows significant added value over the unconstrained ensemble in predicting surface temperature 10 and also 20 years  after the synchronization with observations, thus extending the forecast range of the standard initialised predictions. We also find that while the prediction skill of the constrained ensemble for the first ten years is similar to the initialized decadal predictions, the added value against the unconstrained ensemble extends over more regions than the decadal predictions. In addition, the constraining approach can also be used to attribute predictability of regional and global climate variations to regional SST variability.

How to cite: Mahmood, R., G. Donat, M., Ortega, P., and Doblas-Reyes, F.: Constraining internal variability in CMIP6 simulations to provide skillful near-term climate predictions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9049, https://doi.org/10.5194/egusphere-egu24-9049, 2024.

X5.150
|
EGU24-11930
|
ECS
Lluís Palma, Alejandro Peraza, Amanda Duarte, David Civantos, Stefano Materia, Arijit Nandi, Jesús Peña-Izquierdo, Mihnea Tufis, Gonzalo Vilella, Laia Romero, Albert Soret, and Markus Donat

Reliable probabilistic information at the seasonal time scale is essential across various societal sectors, such as agriculture, energy, or water management. Current applications of seasonal predictions rely on General Circulation Models (GCMs) that represent dynamical processes in the atmosphere, land surface, and ocean while capturing their linear and nonlinear interactions. However, GCMs come with an inherent high computational cost. In an operational setup, they are typically run once a month and at a lower temporal and spatial resolution than the ones needed for regional applications. Moreover, GCMs suffer from significant drifts and biases and can miss relevant teleconnections, resulting in low skill for particular regions or seasons. 

In this context, the use of generative AI methods that can model complex nonlinear relationships can be a viable alternative for producing probabilistic predictions with low computational demand. Such models have already demonstrated their effectiveness in different domains, i.e. computer vision, natural language processing, and weather prediction. However, although requiring less computational power, these techniques still rely on big datasets in order to be efficiently trained. Under this scenario, and with sufficiently high-quality global observational datasets spanning at most 70 years, the research trend has evolved into training these models using climate model output. 

In this work, we build upon the work presented by Pan et al., 2022, which introduced a conditional Variational Autoencoder (cVAE) to predict global temperature and precipitation fields for the October to March season starting from July initial conditions. We adopt several pre-processing changes to account for different biases and trends across the CMIP6 models. Additionally, we explore different architecture modifications to improve the model's performance and stability. We study the benefits of our model in predicting three-month anomalies on top of the climate change trend. Finally, we compare our results with a state-of-the-art GCM (SEAS5) and a simple empirical system based on the linear regression of classical seasonal indices based on Eden et al., 2015.

 

Pan, Baoxiang, Gemma J. Anderson, André Goncalves, Donald D. Lucas, Céline J.W. Bonfils, and Jiwoo Lee. 'Improving Seasonal Forecast Using Probabilistic Deep Learning'. Journal of Advances in Modeling Earth Systems 14, no. 3 (1 March 2022). https://doi.org/10.1029/2021MS002766.


Eden, J. M., G. J. van Oldenborgh, E. Hawkins, and E. B. Suckling. 'A Global Empirical System for Probabilistic Seasonal Climate Prediction'. Geoscientific Model Development 8, no. 12 (11 December 2015): 3947–73. https://doi.org/10.5194/gmd-8-3947-2015.

How to cite: Palma, L., Peraza, A., Duarte, A., Civantos, D., Materia, S., Nandi, A., Peña-Izquierdo, J., Tufis, M., Vilella, G., Romero, L., Soret, A., and Donat, M.: A global empirical system for probabilistic seasonal climate prediction based on generative AI and CMIP6 models , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11930, https://doi.org/10.5194/egusphere-egu24-11930, 2024.

X5.151
|
EGU24-15476
|
Sarah Ineson, Nick Dunstone, Adam Scaife, Martin Andrews, Julia Lockwood, and Bo Pang

Using a large ensemble of initialised retrospective forecasts (hindcasts) from a seasonal prediction system, we explore various statistics relating to sudden stratospheric warmings (SSWs). Observations show that SSWs occur at a similar frequency during both El Niño and La Niña northern hemisphere winters. This is contrary to expectation, as the stronger stratospheric polar vortex associated with La Niña years might be expected to result in fewer of these extreme breakdowns. We show that this similar frequency may have occurred by chance due to the limited sample of years in the observational record. We also show that in these hindcasts, winters with two SSWs, a rare event in the observational record, on average have an increased surface impact. Multiple SSW events occur at a lower rate than expected if events were independent but somewhat surprisingly, our analysis also indicates a risk, albeit small, of winters with three or more SSWs, as yet an unseen event.

How to cite: Ineson, S., Dunstone, N., Scaife, A., Andrews, M., Lockwood, J., and Pang, B.: Statistics of sudden stratospheric warmings using a large model ensemble, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15476, https://doi.org/10.5194/egusphere-egu24-15476, 2024.

X5.152
|
EGU24-3035
Coupled conditional nonlinear optimal perturbations and their applications to ENSO ensemble forecasts
(withdrawn)
Wansuo Duan, Lei Hu, and Rong Feng
X5.153
|
EGU24-868
|
ECS
Jivesh Dixit and Krishna M. AchutaRao

PDO and ENSO are most prominent variability modes in the Pacific Ocean at decadal and interannual timescales respectively. Mutual independence between ENSO and PDO is questionable (Chen & Wallace, 2016). Linear combination of the first two orthogonal modes of SST variability in our Study Region (SR; 70oN - 20oS, 110oE - 90oW) i.e. mode 1 (interannual mode, we call it, IAM; ENSO like variability) and mode 2 (North Pacific Mode (NPM; Deser & Blackmon (1995)); a decadal mode) produces a PDO like variability (Chen & Wallace, 2016). It suggests that PDO is not independently hosted in the Pacific Ocean and can be represented by two linearly independent variability modes.

To produce credible and skillful climate information at multi-year to decadal timescales, Decadal Climate Prediction Project (DCPP), led by the Working Group on Subseasonal to Interdecadal Prediction (WGSIP), focuses on both the scientific and practical elements of forecasting climate by employing predictability research and retrospective analyses within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Component A under DCPP experiments concentrates on hindcast experiments to examine the prediction skill of participating models with respect to actual observations.

As linear combination of  IAM and NPM in SR produces PDO pattern and timescales efficiently, we compared the  ability of DCPP-A hindcasts to predict  IAM, NPM, and  PDO. In this analysis we use output from 9 models (a total of 128 ensemble members), initialised every year from 1960 to 2010. To produce the prediction skill estimates.

At lead year 1 from initialisation, the prediction of NPM,  IAM and PDO is quite skillful as the models are initialised with observations. In subsequent years, skill of either IAM or NPM or both drop significantly and that leads to drop in skill of predicted PDO index. Both the deterministic estimates and probabilistic estimates of prediction skill for DCPP hindcast experiments suggest that the ability of hindcast experiments to predict NPM governs the prediction skill to predict PDO index.

Keywords: PDO, ENSO, NPM, CMIP6, DCPP, hindcast

References

Chen, X., & Wallace, J. M. (2016). Orthogonal PDO and ENSO indices. Journal of Climate, 29(10), 3883–3892. https://doi.org/10.1175/jcli-d-15-0684.1

Deser, C., & Blackmon, M. L. (1995). On the Relationship between Tropical and North Pacific Sea Surface Temperature Variations. Journal of Climate, 8(6), 1677–1680. https://doi.org/10.1175/1520-0442(1995)008<1677:OTRBTA>2.0.CO;2

How to cite: Dixit, J. and AchutaRao, K. M.: Relationship of the predictability of North Pacific Mode and ENSO with predictability of PDO, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-868, https://doi.org/10.5194/egusphere-egu24-868, 2024.

X5.154
|
EGU24-389
|
ECS
Ferenc Divinszki, Anna Kis, and Rita Pongrácz

The latest assessment report (AR6) of the Intergovernmental Panel on Climate Change includes a new element to climate research, i.e. the Interactive Atlas (IA), which is very useful for users from different sectors. As the new CMIP6 global climate model simulations use the brand-new SSP-scenarios paired with the RCP-scenarios, the latest climate change projections should be evaluated in order to update the regional and national adaptation strategies. Keeping this in mind we focused on Europe, with a special emphasis on Hungary in our study.

Our aim was to analyse the potential future changes of different temperature indices for Europe, in order to recognize spatial patterns and trends that may shape our climate in the second half of the 21st century. For this purpose, multi-model mean simulation data provided by the IPCC AR6 WG1 IA were downloaded on a monthly base. We chose two climate indices beside the mean temperature values, which represent temperature extremes, namely, the number of days with maximum temperature above 35 °C and the number of frost days (i.e. when daily minimum temperature is below 0 °C). We focused on the end of the 21st century (2081–2100) with also briefly considering the medium-term changes of the 2041–2060 period (both compared to the last two decades of the historical simulation period, i.e. 1995–2014 as the reference period). For both future periods we used all scenarios provided in the IA, namely, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5.

Several zonal and meridional segments over the continent were defined, where we analysed the projected changes of the indices. The zonal segments provide an insight on two different effects that may induce spatial differences between future regional changes. (i) Continentality can be recognized as an increasing effect from the western parts of the segment towards the east. (ii) Topography also appears as the influence of mountains, plains, and basins emerge. The meridional segments provide information about the north-to-south differences as well, as the effects of sea cover. The changes in the indices are plotted on diagrams representing the different months, where the differences in the scenarios are also shown. These diagrams are compared to their respective landscape profiles, furthermore, statistical parameters were calculated. In addition, a monotony index was defined as the cumulative direction of differences between the neighbouring grid cells and analysed within the study.

Our results show that in the changes of mean temperature, both the zonal location and sea cover will play a key role in forming spatial differences within Europe. However, for the extreme temperature indices, topography and continentality are likely to become more dominant than sea cover, while the zonal location remains an important factor. 

Acknowledgements: This work was supported by the Hungarian National Research, Development and Innovation Fund [grant numbers PD138023, K-129162], and the National Multidisciplinary Laboratory for Climate Change [grant number RRF-2.3.1-21-2022-00014]. 

How to cite: Divinszki, F., Kis, A., and Pongrácz, R.: Analysing the projected monthly changes of temperature-related climate indices over Europe using zonal and meridional segments based on CMIP6 data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-389, https://doi.org/10.5194/egusphere-egu24-389, 2024.

X5.155
|
EGU24-1757
Lisa Degenhardt, Gregor C. Leckebusch, Adam A. Scaife, Doug Smith, and Steve Hardiman

The signal-to-noise paradox is known to be a limitation in multiple seasonal and decadal forecast models where the model ensemble mean predicts observations better than individual ensemble members. This ‘paradox’ occurs for different parameters, like the NAO, temperature, wind speed or storm counts in multiple seasonal and decadal forecasts. However, investigations have not yet found the origin of the paradox. First hypotheses are that weak ocean – atmosphere coupling or a misrepresentation of eddy feedback in these models is responsible.

Our previous study found a stronger signal-to-noise error in windstorm frequency than for the NAO despite highly significant forecast skill. In combination with the underestimation of eddy feedback in multiple models, this led to the question: Might the signal-to-noise paradox over the North-Atlantic be driven by severe winter windstorms?

To assess this hypothesis, the signal-to-noise paradox is investigated in multiple seasonal forecast suites from the UK Met Office, ECMWF, DWD and CMCC. The NAO is used to investigate the changes in the paradox depending on the storminess of the season. The results show a significant increase of the NAO-signal-to-noise error in stormy seasons in GloSea5. Other individual models like the seasonal model of the DWD or CMCC do not show such a strong difference. A multi-model approach, on the other hand, shows the same tendency as GloSea5. Nevertheless, these model differences mean that more hindcasts are needed to conclusively demonstrate that the signal-to-noise error arises from Atlantic windstorms.

How to cite: Degenhardt, L., Leckebusch, G. C., Scaife, A. A., Smith, D., and Hardiman, S.: Is the NAO signal-to-noise paradox exacerbated by severe winter windstorms?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1757, https://doi.org/10.5194/egusphere-egu24-1757, 2024.

X5.156
|
EGU24-6666
Decadal predictions of temperature, precipitation and streamflow considering their covariability
(withdrawn)
Carlos Lima, Hyun-Han Kwon, and Upmanu Lall
X5.157
|
EGU24-9442
El Niño and the AMO Sparked the Astonishingly Large Margin of Warming in the Global Mean Surface Temperature in 2023
(withdrawn after no-show)
Fei Zheng and Ke-Xin Li
X5.158
|
EGU24-19359
|
ECS
Mikhail Vokhmianin, Antti Salminen, Kalevi Mursula, and Timo Asikainen

The ground temperature variability in the Northern Hemisphere winter is greatly influenced by the state of the polar vortex. When the vortex collapses during sudden stratospheric warmings (SSWs), rapid changes in stratospheric circulations propagate downward to the troposphere in the subsequent weeks. The ground effect following SSWs is typically manifested as the negative phase of the North Atlantic Oscillation. Our findings reveal a higher frequency of cold temperature anomalies in the Northern part of Eurasia during winters with SSWs, and conversely, warm anomalies in winters with a strong and stable vortex. This behavior is particularly evident when temperature anomalies are categorized into three equal subgroups, or terciles. Recently, we developed a statistical model that successfully predicts SSW occurrences with an 86% accuracy rate. The model utilizes the stratospheric Quasi-Biennial Oscillation (QBO) phase and two parameters associated with solar activity: the geomagnetic aa-index as a proxy for energetic particle precipitations and solar irradiance. In this study, we explore the model's potential to provide a seasonal forecast for ground temperatures. We assess the probabilities of regional temperature anomalies falling into the lowest or highest terciles based on the predicted weak or strong vortex state. Additionally, we demonstrate that the QBO phase further enhances the forecast quality. As the model provides SSW predictions as early as preceding August, our results carry significant societal relevance as well, e.g., for the energy sector, which is highly dependent on prevailing weather conditions.

How to cite: Vokhmianin, M., Salminen, A., Mursula, K., and Asikainen, T.: Seasonal forecast of the late boreal winter temperature based on solar forcing and QBO, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19359, https://doi.org/10.5194/egusphere-egu24-19359, 2024.

X5.159
|
EGU24-17418
Stefan Lines, Nicholas Savage, Rebecca Parfitt, Andrew Colman, Alex Chamberlain-Clay, Luke Norris, Heidi Howard, and Helen Ticehurst

In this presentation, we introduce the WISER MENA projects SeaFOAM (Seasonal Forecasting Across MENA) and SeaSCAPE (Seasonal Co-Production and Application in MENA). These projects explore both the improvement to the regional-level seasonal forecast in the MENA region, as well as how to tailor the information in ways useful to a range of climate information stakeholders. SeaFOAM works alongside Maroc Meteo, Morocco's National Meteorological and Hydrological Service (NMHS) and the Long Range Forecasting node of the Northern Africa WMO Regional Climate Centre (RCC), to develop a framework for objective seasonal forecasting. This approach will blend techniques such as bias correction via local linear regression and canonical correlation analysis (CCA), with skill-assessed sub-selected models, to improve forecasting accuracy. Multiple drivers of rainfall variability, including the North Atlantic Oscillation (NAO) and Mediterranean Oscillation (MO), are investigated for their calibration potential. SeaSCAPE works with the WMO and various partners across MENA to understand the use of seasonal information in multiple sectors, exploring existing gaps and needs. Through stakeholder engagement workshops, training and bespoke support for the Arab Climate Outlook Forum (ArabCOF), SeaSCAPE operates collaboratively to tailor regional and national-level climate information to improve accessibility and usability of climate information on seasonal timescales.

How to cite: Lines, S., Savage, N., Parfitt, R., Colman, A., Chamberlain-Clay, A., Norris, L., Howard, H., and Ticehurst, H.: Strengthening seasonal forecasting in the Middle East & North Africa (MENA) through the WISER Programme., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17418, https://doi.org/10.5194/egusphere-egu24-17418, 2024.

X5.160
|
EGU24-16985
Julia Lockwood, Nick Dunstone, Kristina Fröhlich, Ramón Fuentes Franco, Anna Maidens, Adam Scaife, Doug Smith, and Hazel Thornton

The current generation of seasonal forecast models struggle to skilfully predict dynamical circulation over the North Atlantic and European region in boreal summer.  Using two different state-of-the-art seasonal prediction systems, we show that tropical rainfall anomalies drive a circulation signal in the North Atlantic/Europe via the propagation of Rossby waves.  The wave, however, is shifted eastwards compared to observations, so the signal does not contribute positively to model skill.  Reasons for the eastward shift of the Rossby wave are investigated, as well as other drivers of the signal in this region.  Despite the errors in the waves, the fact that seasonal forecast models do predict dynamical signals over the North Atlantic/Europe signifies seasonal predictability over this region beyond the climate change trend, and understaning the cause of the errors could lead to skilful predictions.

How to cite: Lockwood, J., Dunstone, N., Fröhlich, K., Fuentes Franco, R., Maidens, A., Scaife, A., Smith, D., and Thornton, H.: Investigating signals in summer seasonal forecasts over the North Atlantic/European region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16985, https://doi.org/10.5194/egusphere-egu24-16985, 2024.

X5.161
|
EGU24-14379
Chieh-Ting Tsai, Wan-Ling Tseng, and Yi-Chi Wang

Over the past century, Taiwan has gradually recognized the hazards posed by extreme heat events (EHT), prompting the development of mid-term adaptation strategies to address challenges in the coming decades. However, our understanding of decadal-scale temperature variations remains insufficient, requiring further research into influencing factors. Our study reveals the crucial role of the Pacific Meridional Mode (PMM) in modulating decadal-scale variations in summer temperatures in Taiwan. During the positive phase of PMM, warm sea surface temperature anomalies trigger an eastward-moving wave train extending into East Asia. This leads to the development of high-pressure circulations near Southeast Asia and Taiwan, enhancing the temperature increase. This mechanism has been reproduced in experiments using the Taiwan Earth System Model. Moreover, our study utilizes the calendar day 90th percentile of maximum temperature (CTX) as the threshold for extreme high-temperature events (EHT), while also employing the heatwaves magnitude scale (HWMS) as the criterion for defining heatwaves. During the positive phase of PMM, the frequency and duration of EHT increase, with variations observed across different regions. The overall intensity of heatwave events also strengthens, primarily due to extended durations. Notably, in a single city, this results in exposure of up to 800,000 person-days to EHT, presenting a tenfold increase compared to the annual effect observed in the long-term warming trend. These findings on the decadal-scale relationship between summer temperatures in Taiwan and PMM contribute to a deeper understanding of EHT and heatwaves events impacts, providing more nuanced insights for future regional strategies in mitigating heatwave disasters.

How to cite: Tsai, C.-T., Tseng, W.-L., and Wang, Y.-C.: Linkage between Temperature and Heatwaves in Summer Taiwan to the Pacific Meridional Mode, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14379, https://doi.org/10.5194/egusphere-egu24-14379, 2024.

X5.162
|
EGU24-14341
Szu-Ying Lin, Wan-Ling Tseng, Yi-Chi Wang, and MinHui Lo

Compound dry and hot events, characterized by elevated temperatures and reduced precipitation, pose interconnected challenges to human social economics, necessitating comprehensive strategies for mitigation and adaptation. This study focuses on the Pacific-Japan (PJ) pattern, a significant climate variability influencing summer climates in East Asia. While previous research has explored its impact on Japan and Korea, our investigation delves into its effects on Taiwan, a mountainous subtropical island with a population of approximately 24 million. Utilizing long-term temperature and rainfall data, along with reanalysis dynamic downscaling datasets, we examine the interannual impacts of the PJ pattern on summer temperature and compound heat and dry events. Our findings reveal a significant temperature increase during the positive phase of the PJ pattern, characterized by anticyclonic anomalous circulation over Taiwan. Additionally, both the Standardized Precipitation Index and soil water exhibit a decline during this phase, reflecting meteorological and hydrological drought conditions. A robust negative correlation (-0.7) between drought indices and temperature emphasizes the compound effect of heat and dry events during the PJ positive phase. This study enhances the understanding of the PJ pattern as a climate driver, describing its role in hot and dry summers over Taiwan. The insights gained, when integrated into seasonal prediction and early warning systems, can aid vulnerable sectors in preparing for potential heat and dry stress hazards.

How to cite: Lin, S.-Y., Tseng, W.-L., Wang, Y.-C., and Lo, M.: Compound Heat and Dry Events Influenced by the Pacific–Japan Pattern over Taiwan in Summer, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14341, https://doi.org/10.5194/egusphere-egu24-14341, 2024.

Posters virtual: Thu, 18 Apr, 14:00–15:45 | vHall X5

Display time: Thu, 18 Apr 08:30–Thu, 18 Apr 18:00
Chairpersons: Leonard Borchert, Leon Hermanson
vX5.30
|
EGU24-15974
|
ECS
Alexander Pasternack, Birgit Mannig, Andreas Paxian, Amelie Hoff, Klaus Pankatz, Philip Lorenz, and Barbara Früh

The German Meteorological Service's (Deutscher Wetterdienst DWD) climate predictions website  (www.dwd.de/climatepredictions) offers a centralized platform for accessing post-processed climate predictions, including subseasonal forecasts from ECMWF's IFS and seasonal and decadal predictions from the German climate prediction system. The website design was developed in collaboration with various sectors to ensure uniformity across all time frames, and users can view maps, tables, and time series of ensemble mean and probabilistic predictions in combination with their skill. The available data covers weekly, 3-month, 1-year, and 5-year temperature means, precipitation sums and soil moisture for the world, Europe, Germany, and particular German regions. To achieve high spatial resolution, the DWD used the statistical downscaling method EPISODES. Moreover, within the BMBF project KIMoDIs (AI-based monitoring, data management and information system for coupled forecasting and early warning of low groundwater levels and salinisation) the DWD provides climate prediction data of further hydrological variables (e.g. relative humidity) with corresponding prediction skill on a regional scale.

However, all predictions on these time scales can suffer from inherent systematic errors, which can impact their usefulness. To address these issues, the recalibration method DeFoReSt was applied to decadal predictions, using a combination of 3rd order polynomials in lead and start time, along with a boosting model selection approach. This approach addresses lead-time dependent systematic errors, such as drift, as well as inaccuracies in representing long-term changes and variability.

This study highlights the improved accuracy of the recalibration approach on decadal predictions due to an increased polynomial order compared to the original approach, and its different impact on global and regional scales. It also explores the feasibility of transferring this approach to predictions with shorter time horizons of the provided variables.

How to cite: Pasternack, A., Mannig, B., Paxian, A., Hoff, A., Pankatz, K., Lorenz, P., and Früh, B.: Recalibrating DWD’s operational climate predictions: towards a user-oriented seamless climate service, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15974, https://doi.org/10.5194/egusphere-egu24-15974, 2024.