EGU24-11840, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-11840
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Impact of Terrestrial Weather on the MLTI Region as Examined from Satellite Constellations and Model Run

Sovit Khadka1, Federico Gasperini1, Jens Oberheide2, and Martin Mlynczak3
Sovit Khadka et al.
  • 1Orion Space Solutions, Louisville, United States of America (sovit.khadka@orionspace.com)
  • 2Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, USA
  • 3NASA Langley Research Center, Hampton, Virginia, USA

The mesosphere, lower thermosphere, and ionosphere (MLTI) region of the Earth’s atmosphere connects the Sun and the lower atmosphere, displaying various physical and electrodynamical processes. This transition region exhibits intermittent, daily, seasonal, annual, and solar cycle variability and that can be probed in-situ or remotely to gain insights into the impact of solar as well as terrestrial weather. This study presents the response of the MLTI system to the global-scale waves (GSWs) in terms of the spatial and temporal variations of temperature, plasma, and neutral density from the simultaneous observations by the multi-satellite constellations. Comparisons of these with model results can provide an opportunity to monitor evolutions, variations, and coupling of their GSW structures in the MLTI region. The temperature, plasma, and neutral density variations were diagnosed concurrently from the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED)‐Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), Defense Meteorological Satellite Program (DMSP), Constellation Observing System for Meteorology, Ionosphere and Climate 2 (COSMIC-2) observations, and Swarm-C satellite constellations, respectively, during 2020-2021 for solar minimum and geomagnetic quiet conditions. Additionally, for the first time, we used an updated version of the Climatological Tidal Model of the Thermosphere (CTMT) to analyze the vertical-temporal-latitudinal tidal structures of temperature and density. The updated CTMT uses solar flux dependent Hough Mode Extensions (HMEs), includes a more extensive collection of TIMED Doppler Interferometer (TIDI) data, compiles SABER V2.08, restructures ion drag and dissipation, and provides tidal components for individual years. We extract the wavenumber (WN) patterns along longitudes in the form of temperature, neutral and electron densities from satellites data, assuming a fixed local time. We then examine tidal components from the new version of CTMT to determine modeling evidence for the variation and coupling of the GSWs under similar conditions. Thereby, we compare the reconstructed WN structures from tidal components obtained from the updated CTMT with the evaluated GSW patterns from the satellite-borne dataset. Using satellite observations and new CTMT approaches, we investigate the impact of terrestrial weather and possible factors that trigger variability, interaction, and coupling processes mediated by GSWs to the MLTI system within ±45o latitudes.

How to cite: Khadka, S., Gasperini, F., Oberheide, J., and Mlynczak, M.: Impact of Terrestrial Weather on the MLTI Region as Examined from Satellite Constellations and Model Run, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11840, https://doi.org/10.5194/egusphere-egu24-11840, 2024.