EGU24-12803, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-12803
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Photochemistry of the Recent Martian Atmosphere at Different Obliquities

Yangcheng Luo1, Franck Lefèvre2, and François Forget1
Yangcheng Luo et al.
  • 1LMD/IPSL, Sorbonne Université, PSL Research University, École Normale Supérieure, École Polytechnique, CNRS, Paris, France
  • 2LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France

Due to gravitational perturbations from nearby planets, Mars has undergone large obliquity variations through its history. Modeling suggested that in the past 10 million years, the obliquity of Mars has varied by up to 20°, from 15° to 35°. During time periods of high obliquity, the polar regions of Mars received more solar insolation and became warmer, leading to more rapid sublimation of water ice and higher atmospheric water content. During periods of low obliquity, on the contrary, water vapor condensed in polar regions and the atmosphere became dry. This variation has a significant impact on the photochemistry of the Martian atmosphere, as HOx radicals, which are photolytic products of water vapor, are key catalysts to the photochemistry of the Martian atmosphere. It is then of interest to explore the photochemistry of Mars at different obliquities and its effects on the climate and surface of Mars, as part of the objectives of the “Mars Through Time” European Research Council project. In preparation for future Mars sample return missions, it is important to evaluate the preservability of potential organic matter buried in the shallow subsurface with different oxidizing capacities of the atmosphere at different obliquities.

In view of the three-dimensional nature of the sublimation, transport, and condensation of water, we employ a fully coupled photochemical-radiative-dynamical model—the Mars Planetary Climate Model, developed at LMD in collaboration with other institutions—to simulate the photochemistry of the recent Martian atmosphere at obliquities between 15° and 35°. We find that at high obliquities, water content of the Martian atmosphere could exceed the present-day value by more than one order of magnitude, and the OH concentration could be higher by up to two orders of magnitude. These drastic changes result in a significantly lower CO concentration. Opposite effects are observed from low-obliquity simulations. The nonlinearity in the photochemical system, however, has led to more complex behaviors of the HO2 and H2O2 concentrations. We will explain the mechanisms behind these effects and discuss their implications in the paleoclimate of Mars and the preservation of potential biogenic organic matter in the shallow subsurface. We will also address the long-standing “CO-deficit” problem in Mars photochemical modeling, and show how the state-of-the-art 3D photochemical modeling helps to mitigate the problem.

How to cite: Luo, Y., Lefèvre, F., and Forget, F.: Photochemistry of the Recent Martian Atmosphere at Different Obliquities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12803, https://doi.org/10.5194/egusphere-egu24-12803, 2024.