Global terrestrial ecosystem resilience: a high-resolution multivariate analysis of patterns and drivers
- University of Stockholm, Stockholm Resilience Centre, Stockholm, Sweden (nielja.knecht@su.se)
Natural terrestrial ecosystems in different parts of the world have been losing resilience in the past decades. Such losses of resilience can be the precursors for regime shifts on local or regional scales that can have large impacts on ecosystem structure and function as well as nature’s contributions to people. Drivers of resilience loss include mainly changes in the mean and variability of temperature and precipitation, and anthropogenic land modifications of adjacent or remote ecosystems.
Global assessments of ecosystem resilience often exclude areas with direct anthropogenic land use changes and focus instead on remnant natural ecosystems. However, for regional stakeholders it is important to understand how land-use and zoning decisions may affect the resilience of remaining ecosystems and the risk of critical transitions.
In this study, we conduct a high-resolution global assessment of terrestrial ecosystem resilience losses, using time series of multiple remotely-sensed ecosystem indicators, and employing a range of early warning signals. We also evaluate the importance of different climatic and anthropogenic drivers at a local scale of administrative units in causing the detected changes in resilience. This allows us to get a comprehensive and robust understanding of different dimensions of change in global ecosystem resilience and their locally relevant drivers of change.
How to cite: Knecht, N., Fetzer, I., and Rocha, J.: Global terrestrial ecosystem resilience: a high-resolution multivariate analysis of patterns and drivers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12856, https://doi.org/10.5194/egusphere-egu24-12856, 2024.
Comments on the supplementary material
AC: Author Comment | CC: Community Comment | Report abuse