EGU24-13132, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-13132
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Variability in upper ocean properties around the South Orkney Islands, Antarctica

Angelika Renner1, Sebastian Menze2, Elizabeth Jones1, Emma Young3, Sally Thorpe3, and Eugene Murphy3
Angelika Renner et al.
  • 1Institute of Marine Research, Fram Centre, Tromsø, Norway (angelika.renner@hi.no)
  • 2Institute of Marine Research, Bergen, Norway
  • 3British Antarctic Survey, Cambridge, UK

The South Orkney Islands region is a highly productive environment situated between the Weddell Sea to the south and Scotia Sea to the north. Complex bathymetry around the island plateau strongly influences circulation and water mass exchanges. While the general, large-scale patterns in currents and hydrography are fairly well described, more detailed studies into spatial and temporal variability are mostly lacking, especially for the upper water column. In this study, we present hydrographic and ocean current observations from two surveys across the plateau conducted in January 2016 and 2019. The data confirm the dominant, topographically steered boundary current associated with the Weddell Front, which follows the continental slope around the southern edge of the South Orkney Plateau towards its northeastern side. During this passage, core characteristics of Weddell Sea water masses become eroded through interaction with other water masses. Where the Weddell Front first meets the plateau on its western side, large variability in currents is observed, possibly due to eddy activity and likely promoting mixing and water mass transformation. Differences in water mass characteristics between the two years are likely related to very different climatic conditions in the months prior to the surveys with opposing sea ice states, and large differences in regional winds, and air and sea surface temperatures. On the northwestern South Orkney Plateau, two canyons are particular hotspots for Antarctic krill, and the larger canyon was surveyed with high resolution, repeat transects. These repeated observations show high day-to-day variability in both currents and hydrography, possibly forced by short-term wind variability driving or restricting water exchange between the canyon and the deeper ocean. This suggests that the elevated krill abundance associated with the canyons may be due to several mechanisms, including retention by the local currents, interactions between the currents and krill behaviour, and potentially increased phytoplankton growth due to additional nutrient availability driven by the highly dynamic environment.

How to cite: Renner, A., Menze, S., Jones, E., Young, E., Thorpe, S., and Murphy, E.: Variability in upper ocean properties around the South Orkney Islands, Antarctica, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13132, https://doi.org/10.5194/egusphere-egu24-13132, 2024.