EGU24-13137, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-13137
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Land subsidence induced by urbanization: towards building damage predictions

Valentina Maoret1,2, Thibault Candela2, Ylona van Dinther1, Kay Koster2, Pietro Teatini3, Jan Diederik van Wees1,2, and Claudia Zoccarato3
Valentina Maoret et al.
  • 1Utrecht University, Utrecht, the Netherlands
  • 2TNO, Utrecht, the Netherlands
  • 3University of Padova, Padova, Italy

Here, the outline of a new research project focused on predicting land subsidence in urban areas in the Netherlands is presented. The need for subsidence predictions at a scale comparable to building size and the potential additional effect due to the presence of building are the key points of the present contribution. The final objective is to disentangle the relative subsidence contribution of the presence of building in one selected urban area in the Netherlands.

Land subsidence induced by human activities is a well-known issue. In the Netherlands, as well as worldwide, multiple subsurface activities covering a wide spectrum of depths (such as hydrocarbon extraction, salt mining, groundwater withdrawal) can lead to subsidence. In urban areas this inflicts damage to buildings and infrastructure, leading to high costs and hazardous situations. A complicating factor in urban areas  is that the presence of the built environment also itself influences the processes of subsidence. To address these challenges, we intend to fill out two big knowledge gaps.

The first challenge in predicting subsidence in urban areas is the relatively small spatial-scale of the subsidence processes, i.e. scale smaller than buildings. This requires the spatial downscaling of existing modelling approaches. Since damages to buildings are driven by small-scale spatial subsidence fluctuations, our current large-scale subsidence predictions are almost meaningless for urban areas.

The second one consists of assessing the effect of urbanization itself on land subsidence. Our current subsidence models disregard the presence of the build environment and thus this potential additional effect in urban areas, like the presence of buildings, needs to be implemented. To achieve our goal we plan to combine multiple data sources (building locations/weights/years of construction, InSAR, LiDAR, and Cone Penetration Tests) with physics-based and ML-based models.

How to cite: Maoret, V., Candela, T., van Dinther, Y., Koster, K., Teatini, P., van Wees, J. D., and Zoccarato, C.: Land subsidence induced by urbanization: towards building damage predictions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13137, https://doi.org/10.5194/egusphere-egu24-13137, 2024.