Compound events and hydro-climate extremes – how they are impacting Australia, now and in the future
- Bureau of Meteorology, Water Program, Australia (wendy.sharples@bom.gov.au)
Many natural disasters in Australia are the result of compound events, where the assessment of single climate system drivers in isolation do not fully capture hydro-climate extremes. Multivariate compound events such as ‘hot and dry’ and ‘wet and windy’ events, portend a multitude of hazards from heatwaves and bushfires through to coastal inundation and floods. The multiple drivers compounding together in these events, lead to extreme conditions ripe for natural disasters to occur. Presently, compound events are negatively impacting Australia’s ability to protect its population and environmental and economic assets, as Australia tries to adjust to the greenhouse gas driven climatic shifts, with potential projected increases in hazard severity. We aim to understand the change in frequency, duration and intensity of ‘hot and dry’ and ‘wet and windy’ compound events, at current and increased global warming levels. The ‘hot and dry’ compound event is defined as the co-occurrence of SPI drought conditions, and at least 3 consecutive days of hot temperatures. The ‘wet and windy’ compound event is defined as the co-occurrence of both extreme wind and precipitation. These two compound events were chosen to begin with due to the historic severity of their associated impacts. However further research is planned to understand all types of compound events including preconditioned, and, spatially and temporally compounding, in order to fully gauge Australia’s potential vulnerability to natural disasters now and in the future.
How to cite: Sharples, W., Sharmila, S., Ulrike, B.-M., Ghajarnia, N., Bharamian, K., Hou, J., Pickett-Heaps, C., and Carrara, E.: Compound events and hydro-climate extremes – how they are impacting Australia, now and in the future, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13741, https://doi.org/10.5194/egusphere-egu24-13741, 2024.