EGU24-14271, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14271
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A similarly warm but drier Mediterranean region at the Miocene - Pliocene transition

Iuliana Vasiliev-Popa1, Konstantina Agiadi2, Katharina Methner3, Jens Fiebig4, and Andreas Mulch1,4
Iuliana Vasiliev-Popa et al.
  • 1Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany (iuli.iuliana@yahoo.com)
  • 2Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
  • 3Institute for Earth System Science and Remote Sensing, University of Leipzig, Talstrasse 35, 04103, Leipzig, Germany
  • 4Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany

Between 5.97-5.33 Ma, kilometre-thick evaporite units were deposited in the Mediterranean Basin during an event known as the Messinian Salinity Crisis (MSC). The MSC was characterised by a strongly negative hydrological budget, with a net evaporative loss of Mediterranean basin water exceeding precipitation and riverine runoff inputs. Despite evident proves of environmental crisis at the end of the Messinian, the Mediterranean domain still lacks quantitative estimates of temperature change across the transition from the (brackish) Lago Mare, marking the end of the Miocene, to the fully marine Pliocene. Here we reconstruct continental mean annual temperatures (MAT) using branched glycerol dialkyl glycerol tetraether (brGDGT) biomarkers for the time period corresponding to the MSC Stage 3 (5.55-5.33 Ma) and compare them with continental temperature values obtained from Δ47 clumped isotope geochemistry measured on paleosol carbonate nodules found at few locations in the Mediterranean basin. The well-preserved organic biomarkers were extracted from outcrops onshore and offshore covering a vast portion of the Mediterranean Basin; onshore (Malaga, Sicily, Cyprus) and offshore (DSDP core holes 124 and 134 from the Balearic abyssal plane, hole 374 from the Ionian Basin and hole 376 drilled west of Cyprus). Calculated MATs for the 5.55 to 5.33 Ma time interval show values around 16 to 19 ºC for the Malaga, Sicily and Cyprus outcrops. The MAT values calculated for DSDP Leg 13 holes 124, 134 and Leg 42A holes 374 and 376 are lower, around 13 to 16 ºC. Comparing the brGDGT-MAT values with Δ47-MAT values from carbonate nodules, shows high congruence between both approaches. For the northern Mediterranean Δ47-MAT is 24.6 ± 1.6 °C and brGDGT-MAT is 19 ± 4.8 ºC. For Cyprus Δ47-MAT is 20.3 ± 1.7 °C and brGDGT-MAT is 18 ºC ± 4.8 ºC. Given the very different nature of the used paleoproxies, the similarity of the obtained MAT values provides a strong indication of their (cross)validity in sampled sections. Additionally, the measured δ18O values for the carbonate nodules used for the Δ47-MAT show high δ18O of the soil water (in the range of -5 ±0.7‰) indicate highly evaporative conditions for the two onland sites where these were collected (Northern Apennines and Cyprus). We conclude that between 5.55 to 5.33 Ma the temperatures in the Mediterranean region were similar to present-day conditions, yet the region has suffered from excess evaporation as indicated by combined high δ18O values from (inorganic) carbonate nodules and δ2H values from (organic) biomarkers.

How to cite: Vasiliev-Popa, I., Agiadi, K., Methner, K., Fiebig, J., and Mulch, A.: A similarly warm but drier Mediterranean region at the Miocene - Pliocene transition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14271, https://doi.org/10.5194/egusphere-egu24-14271, 2024.