SSP1.4 | Salt Ages: unravelling geologic, oceanographic, climatic and biotic consequences of restricted marine gateways and Salt Giants
EDI
Salt Ages: unravelling geologic, oceanographic, climatic and biotic consequences of restricted marine gateways and Salt Giants
Co-organized by OS2
Convener: Fadl Raad | Co-conveners: Hanneke Heida, Konstantina Agiadi, Dan Valentin PalcuECSECS, Rachel Flecker
Orals
| Thu, 18 Apr, 16:15–18:00 (CEST)
 
Room -2.33
Posters on site
| Attendance Fri, 19 Apr, 16:15–18:00 (CEST) | Display Fri, 19 Apr, 14:00–18:00
 
Hall X1
Orals |
Thu, 16:15
Fri, 16:15
Restricted evaporitic basins through geologic time are cradles of biotic and abiotic change. They are controlled by straits linking the open ocean with marginal basins which in turn play an important role in driving global thermohaline circulation through the exchange of heat and salt. When these marine gateways allow only very limited exchange, typically during early stage opening and the final stages of closure, marginal seas can experience extreme fluctuations in salinity, from brackish to hypersaline conditions, with knock-on consequences for the density of the overflow. Restricted gateway exchange in mid-latitude settings can result in the formation of large evaporite deposits or “salt giants”.
In addition to their profound local impact, these salt giants can be sufficiently large to change the chemistry of the ocean, impact the carbon cycle and marine ecosystems, and modify climate on a global scale.
We welcome presentations from researchers investigating the opening or closing of marine gateways, modern or ancient, and their climatic, sedimentological and/or biological consequences. We encourage both modellers and empirical researchers to share their insights into the causes and consequences of marine connectivity change. We seek to draw together scientists focussed on a variety of salt giants including the evaporites that formed as the South Atlantic opened, the Zechstein salt basin, as well as the Mediterranean Messinian Salinity Crisis (MSC). The session will be one of the earliest opportunities to share initial results from IODP Expedition 401 (Dec 2023-Feb 2024), the offshore element of the IMMAGE land-2-sea drilling project which targets the late Miocene records of Mediterranean-Atlantic exchange.

Orals: Thu, 18 Apr | Room -2.33

Chairpersons: Konstantina Agiadi, Dan Valentin Palcu, Hanneke Heida
16:15–16:25
|
EGU24-5056
|
ECS
|
On-site presentation
Rafaela Cardoso Dantas, Rachel Flecker, Ian Parkinson, Maurice Tucker, Dan Palcu, Paul Meijer, André Pires Negrão, and Luigi Jovane

The temporal and geological characteristics surrounding the initiation of the Proto-South Atlantic in the Early Cretaceous are presently unclear, marked by potential marine ingressions from both the northern Tethys- and the southern-ocean, ultimately culminating in the generation of immense salt deposits. The Araripe Basin in Northeast Brazil contains crucial outcropping records of these phenomena with its origin and development intricately linked to the tectonic forces orchestrating the disintegration of the Gondwana Supercontinent. The basin underwent distinct tectonic phases, transitioning from a pre-rift continental environment to a syn-rift lacustrine setting, and finally to evaporitic systems in the post-rift/sag phase.

The post-rift stage is notably represented by the Santana Group, which chronicles significant environmental shifts, including the potential existence of a seaway linking the waters of the Tethys to the Proto-South Atlantic, intermittent marine incursions, and the presence of substantial evaporite layers. Despite extensive study, the paleoenvironment of this unit remains contentious, with hypotheses ranging from epicontinental sea to a basin with non-marine and transitional environments under marine influence.

To address this ambiguity, we employ geochemical, paleomagnetic, and isotopic records (strontium 87Sr/86Sr and osmium 187Os/188Os) as indicators of hydrological connectivity. These tools serve as invaluable aids in reconstructing the paleoenvironment during the deposition of both pre- and post-salt phases in the basin.

 

Keywords: Salt giant, South Atlantic opening, marine gateways, strontium isotopes, osmium isotopes

How to cite: Cardoso Dantas, R., Flecker, R., Parkinson, I., Tucker, M., Palcu, D., Meijer, P., Pires Negrão, A., and Jovane, L.: Tracing the opening and connectivity of the South Atlantic with Sr and Os isotopes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5056, https://doi.org/10.5194/egusphere-egu24-5056, 2024.

16:25–16:35
|
EGU24-21155
|
On-site presentation
Davit Vasilyan, Oleg Mandic, Marius Stoica, Kakhabe Koiava, Stjepan Coric, Pavel Goldin, Mathias Harzhauser, Wout Krijgsman, and Sergei Lazarev

During the late Middle – Late Miocene, the large epicontinental Paratethys Sea that occupied the vast territory of West Eurasia’s interior underwent a remarkable hydrological transformation. At 12.6 Ma, driven by the interplay between the climatically controlled basin water budget and tectonically controlled gateway dynamics, the Paratethys became hydrologically isolated from the global ocean. During the following Sarmatian s.l. Stage (12.65 – 7.6 Ma), the largest eastern branch of the Paratethys – The Eastern Paratethys – became an endorheic basin with the hydrological balance being primarily controlled by the climate (ratio of evaporation/precipitation). Variations in the hydrological balance affected water chemistry, leading to a high level of aquatic ecosystem endemism/radiation and later to their extinction. Despite relatively well-documented trends of biotic evolution in the Sarmatian s.l., aspects such as comprehensive age constraints, (substage) biozonation, and depositional characteristics of strong water-level fluctuations are still missing. This gap of knowledge complicates interregional paleo(bio)geographic, tectonic, and paleoenvironmental studies of the five million-year-long portion of West Eurasian history.

In this study, we present the results of our multidisciplinary research project dedicated to geochronology, biostratigraphy, environmental evolution, and dynamics/response of the biotic record of the Eastern Paratethys during the Sarmatian s.l. The periods (i.e. stages) prior to (Konkian) and after (Maeotian) the isolation have been also considered in this study to provide a complete picture of the basin’s hydrological transformation. Three representative sections, located in the Caspian Sea, Transcaucasian Strait and the Black Sea covering the Konkian – Sarmatian s.l. – lower Maoetian, have been studied. Systematic sampling of the sections for magnetostratigraphy, mollusk, ostracod, foraminifera and nannofossils allowed to create a consecutive and well-dated biotic record and enabled evaluation of the synchronicity of the biozones in different parts and depositional settings of the basin. Moreover, the marine vertebrate fauna (fishes, marine mammals) across the Konkian-Maeotian has also been documented and studied.

Our data provides integrated stratigraphic constraints of the Serravallian-Tortonian of the Eastern Paratethys and completes the so far missing ages of the Sarmatian s.l. substages and biozones. Further, the reconstruction of depositional environments of the Eastern Paratethys during the Sarmatian s.l., especially for the Caspian Basin part, helped to understand the scale of the extreme Sarmatian s.l. water level oscillations. Integration of the age model, depositional setting and marine vertebrate faunal record suggest a very diverse and abundant fish and marine mammalian fauna in the Volynian (early Sarmatian s.l.), which, however, gradually decrease in the Bessarabian (middle Sarmatian s.l.) and entirely vanishes by the end of the Khersonian (late Sarmatian s.l.).

How to cite: Vasilyan, D., Mandic, O., Stoica, M., Koiava, K., Coric, S., Goldin, P., Harzhauser, M., Krijgsman, W., and Lazarev, S.: The history of the Eastern Paratethys during the Serravallian-Tortonian from a restricted marine basin to a megalake: integrated stratigraphy, hydrological evolution and biotic record, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21155, https://doi.org/10.5194/egusphere-egu24-21155, 2024.

16:35–16:45
|
EGU24-570
|
ECS
|
solicited
|
On-site presentation
Katja Mužek, Oleg Mandic, Valentina Hajek Tadesse, Mathias Harzhauser, Marijan Kovačić, Tomislav Kurečić, and Đurđica Pezelj

Lake Pannon was a huge central European long-lived endorheic lake settled in the Pannonian Basin System and surrounded by the Alps, Carpathians and Dinarides mountain ranges during the late Neogene. The rise of brackish Lake Pannon enabled establishment of specific environmental conditions which triggered a spectacular adaptive radiation of a great number of autochthonous mollusk and ostracod species. The latter species represent excellent regional paleoecological proxies and biostratigraphic markers due to their good preservation-potential and taxonomic richness. Although dominantly endemic to Lake Pannon, some of its taxa managed to migrate into the Eastern Paratethys and have also been reported from the Mediterranean. These species are restricted to the Lago Mare interval, representing the ultimate stage of the Messinian Salinity Crisis, a significant environmental perturbation characterized by massive evaporite deposition. The Lago Mare interval was apparently forced by a drainage of the Eastern Paratethys brackish water into the Mediterranean. The Bozara section is situated in the southern Pannonian Basin at the southern slopes of Mt. Papuk and carries a well-preserved benthic fauna representative of Lake Pannon. The 27 -m-thick section consists of alternating pelitic sediments and sand packages divided into 4 facies: silty marl and calcareous silt (F1), sand (F2), intercalation of sand and sandy silt (F3) and clayey silt (F4). According to the regional stratigraphic division it belongs to the Nova Gradiška Formation. We detected therein 25 ostracod and 17 mollusk taxa allowing an integrated evaluation of the depositional setting, biostratigraphic position and paleogeographic distribution pattern. The paleoecology of Bozara fauna documents a general shallowing upward trend along the section from calm deep-water sublittoral to deltaic high-energy littoral conditions. Based on presence of several biostratigraphic markers, such as the bivalve Rhombocongeria rhomboidea and the ostracod Caspiocypris pontica the stratigraphic position of the Bozara section is constrained to the Portaferrian substage (8.0-4.5 Ma).
From 16 ostracod taxa determined at species level, 10 can be found in the Eastern Paratethys deposits, whereas only 3 are shared with the Mediterranean Lago Mare. In contrast, among 12 corresponding mollusk taxa, only 4 are shared with the Eastern Paratethys, while being completely absent from the Lago Mare interval. Such a paleobiogeographic pattern suggests that the Lake Pannon outflow and faunal migration into the Eastern Paratethys, ceased distinctly before the Lago Mare phase and the corresponding migration of Paratethys biota into the Mediterranean basin.

 

How to cite: Mužek, K., Mandic, O., Hajek Tadesse, V., Harzhauser, M., Kovačić, M., Kurečić, T., and Pezelj, Đ.: Tracing the origin of Lago Mare biota: ostracods and mollusks from the late Neogene of the Slavonian mountains in the southern Pannonian Basin (NE Croatia) , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-570, https://doi.org/10.5194/egusphere-egu24-570, 2024.

16:45–16:55
|
EGU24-13099
|
On-site presentation
Werner Schwarzhans

The coquina along the Oued Beth south of Dar bel Hamri near Sidi Slimane is known for its fossil-richness, but the stratigraphic position has long been debated for Late Miocene or Early Pliocene age. A review of fossils and samples taken during field work in the mid-70ies supports an Early Pliocene age. Recently, I described the rich otolith-based fish fauna from these rocks, which are positioned in a funnel-shaped embayment close to the Strait of Gibraltar ideally situated as a reservoir for remigration of biota into the Mediterranean following the Messinian Salinity Crisis. The analysis of the fish fauna revealed that:

1.- The diversification of the fish fauna is exceptionally high and dominated by otoliths from adult specimens, which probably indicates a high food supply at moderate depth on a middle to lower shelf position during the deposition of the coquina.

2.- The otolith-based fish fauna from the Early Pliocene of the Rharb Basin shows a good resemblance not only to the coeval fauna of the Mediterranean, but also exhibits a notable proportion of putative endemic species and species related to today’s tropical West African fauna.

3.- The faunal composition thus exhibits a unique character that is sufficiently different from known or deduced neighboring bioprovinces, and thus a “Maghrebian bioprovince” is proposed for the Early Pliocene NW African region.

4.- The faunal comparison between Early Pliocene Mediterranean and NW African fish fauna reveals few candidates for allopatric speciation and in situ survival in the Mediterranean.

How to cite: Schwarzhans, W.: The Early Pliocene fish fauna of the Rharb Basin in NW Morocco based on otoliths - a reservoir for remigration into the Mediterranean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13099, https://doi.org/10.5194/egusphere-egu24-13099, 2024.

16:55–17:05
|
EGU24-3231
|
On-site presentation
William Ryan and Fadl Raad

A simple box model is developed to access the astronomical-modulated exchange of Atlantic seawater with the Mediterranean during the Late Miocene salinity crisis. Key to the calculations is an activity coefficient that reduces the rate of evaporation as salinity increases. The model uses a narrow and shallow portal in order to get salinity to increase to saturation for gypsum, halite and the most soluble potash and magnesium salts. Flow through the Atlantic entry portal changes in direction as climate oscillates from arid to wet during each precession cycle. The model addresses the geochemical riddle of “low salinity gypsum” with calculations showing that rain and rivers supply eight times more water to the Mediterranean brine than seawater. The sulfate isotopes in gypsum come in with the ocean and those in the water of hydration in gypsum from atmospheric precipitation. The evolving chloride, sulfate, potassium and magnesium ions observed from fluid inclusions in gypsum and halite are reproduced in the calculations. The mass of computed halite is approximate to the volume of acoustically-transparent halite observed in reflection profiles. The rates of gypsum, halite and kainite precipitation diminish with time as the result of the decreasing activity coefficient and the associated reduction in the amount of Atlantic inflow. The evaporative model’s reduction in the Atlantic-Mediterranean exchange conforms with the sedimentological and geochemical observations of the gypsum deposits on margins and halite on deep basin floors.

How to cite: Ryan, W. and Raad, F.: Computations to account for composition of the Mediterranean’s Messinian gypsum and halite, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3231, https://doi.org/10.5194/egusphere-egu24-3231, 2024.

17:05–17:15
|
EGU24-16605
|
ECS
|
solicited
|
On-site presentation
Ronja Ebner, Paul Meijer, and Giovanni Aloisi

The Messinian Salinity Crisis is an event that not only led to the youngest known salt giant, but also impacted the global ocean salinity due to the mass of ions trapped in the Mediterranean Sea. Understanding its full implications requires comprehensive understanding of the events, and due to limitations in data acquisition, modeling is essential to bridge knowledge gaps.
Our latest box model aims to include those processes and aspects that have been indicated to be the most influential by previous model studies. It is forced by (1) a reconstructed freshwater budget with the option to include a salinity feedback, (2) the depth of the Sstrait of Gibraltar and (3) changes in the sea level of the Atlantic. The circulation in the Mediterranean includes the exchange between the eastern and the western basin across the sill  of Sicily on the horizontal level, as well as vertical exchange between two layers. The shapes of the boxes are determined by the hypsometry of the basin, which allows for realistic drawdown and refilling scenarios. The latter offers the option to test the influence of the Paratethys.
To assess the validity of scenarios, the model output is compared to the volume of the known deposits as well as the cycles recorded in gypsum outcrops. An additional tracer in the model is the Sr isotope signal. 
Our findings highlight the importance of horizontal gradients in explaining gypsum deposits in the western basin, unlike the more uniform distribution of gypsum and halite the model produces in the eastern basin. While the onset of gypsum deposition may not necessarily differ between the basins, our results support the theory that halite precipitation began earlier in the east than in the west. This type of model will not answer all questions, but it might guide us to the new ones.

How to cite: Ebner, R., Meijer, P., and Aloisi, G.: From marine to brine and back – a new box model approach to investigate the external influences on the Messinian salinity crisis  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16605, https://doi.org/10.5194/egusphere-egu24-16605, 2024.

17:15–17:25
|
EGU24-399
|
ECS
|
On-site presentation
Francesco Pilade, Michele Licata, Iuliana Vasiliev, Daniel Birgel, Francesco Dela Pierre, Marcello Natalicchio, Alan Mancini, Andreas Mulch, and Rocco Gennari

The quantitative reconstruction of paleoclimatic and paleoenvironmental conditions in regions and in time periods characterized by recurrent and significant fluctuations is challenging. An example of strong paleoenvironmental change occurred in the Mediterranean Basin across the Miocene – Pliocene boundary (5.33 Ma), marked by the restoration of normal marine conditions after the 'Lago-Mare' terminal phase of the Messinian salinity crisis. Environmental conditions during the Lago-Mare phase are still uncertain due to the controversial body fossil record, consisting of freshwater to brackish assemblages (ostracods, dinocysts, mollusks, and foraminifera), as well as marine microfossils (otoliths of marine fishes, calcareous plankton).

However, two scenarios were suggested to describe this transition: 1) a catastrophic and sudden sea level rise causing the drastic change from freshwater to marine deep environments; 2) a gradual sea level rise, characterized by a fast to gradual transition from brackish to marine environments.

To quantify the changing conditions during the Miocene–Pliocene transition, we used a multivariate statistical approach to interpret a large array of terrestrial and aquatic molecular-based indices, in a sedimentary succession of the Northern Mediterranean (Maccarone section, Central Italy). The statistical procedure was specifically developed to address the complexities emerging from the heterogeneous dataset.

An illustrative example suggests that using the TEX86, UK37’, and MBT´5ME paleothermometers, we obtained different values and trends in the changing Mediterranean during the study interval. While the study acknowledges the validity of UK37’ as a paleothermometer in variable environments, it highlights that TEX86and MBT´5ME are sometimes compromised by other sources, such as reworked sediment or other organisms that produce the same lipid inventory. In these cases, these proxies provide information about environmental processes rather different than temperatures.

Cluster analysis supports a stepwise evolution during the Miocene-Pliocene transition, besides redundancy analysis (RDA) indicates that the water column structure changed from stratified (Tetrahymanol) during the Messinian to mixed during the Zanclean. A second gradual change is instead related to terrestrial vegetation modifications, indicating a gradual coastal environment reconfiguration after a marine transgression with the distancing of the costal line and  a reduction of wetland aquatic plants signal. Finally, molecular fossils are also influenced by cyclical changes, not related to the Messinian salinity crisis demise but linked to astronomical-driven climatic cycles.

How to cite: Pilade, F., Licata, M., Vasiliev, I., Birgel, D., Dela Pierre, F., Natalicchio, M., Mancini, A., Mulch, A., and Gennari, R.: Probing large paleoenvironmental variability of Mediterranean during the Miocene-Pliocene transition via advanced multivariate statistical analysis on lipid biomarker multiproxy., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-399, https://doi.org/10.5194/egusphere-egu24-399, 2024.

17:25–17:35
|
EGU24-20769
|
On-site presentation
Daniel Garcia-Castellanos, Hanneke Heida, Dan Palcu, and Vanni Aloisi

Stratigraphic and geochemical evidence suggests that the Mediterranean Sea underwent widespread salinization and a kilometer-scale evaporative drawdown between 5.97 to 5.33 million years ago, during the period known as the Messinian salinity crisis (MSC). The mechanisms responsible for the accumulation of one million cubic kilometers of salt on the sea floor and the impact on terrestrial and marine fauna and on climate are being better understood in the last decades. However, the presence of relatively fresh water sediment containing fossil fauna of eastern (Paratethyan) provenance in the last stages of the MSC poses severe problems to understand the ending of the crisis. These brackish-water deposits, known as the Lago-Mare unit, are sometimes found at elevations close to the present sea level, in apparent contradiction with the coetaneous evaporitic sediment found in deeper, central parts of the Mediterranean.

 

We make use of landscape evolution models calibrated with sediment transport and river incision data to explore plausible scenarios of climate and sea level changes during the MSC. The results show that, upon full isolation, the large initial evaporative sea level fall of the Mediterranean leads to a progressive capture of the waters from nearby lacustrine basins such as the Black Sea or the Pannonian Basin. This drainage area expansion triggers a gradual sea level rise in the Mediterranean. Milankovic climate oscillations superimposed to this trend lead to large-amplitude (500-1000 m) harmonic sea level variations reaching ever-higher levels. This is consistent with the salt precipitation in deeper areas during lowstands and Lago-Mare deposition during highstands in marginal areas. This model may also explain the seemingly contradiction between the high-level Lago-Mare deposits and the km-scale sea level drop estimated from erosion markers and implicit in the Zanclean cataclysmic reflooding model.

How to cite: Garcia-Castellanos, D., Heida, H., Palcu, D., and Aloisi, V.: What controlled the Mediterranean Sea level during the Lago-Mare stage of the Messinian salinity crisis?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20769, https://doi.org/10.5194/egusphere-egu24-20769, 2024.

17:35–17:45
|
EGU24-22574
|
On-site presentation
Emmanuelle Ducassou, Rachel Flecker, and Trevor Williams and the IODP Expedition 401 participants

Salt giant formation is dependent on the dimensions of the connection linking the marginal basin to the open ocean and the nature of exchange between then. However, records from these connecting straits are rare, making it difficult to test connectivity scenarios. As part of the IMMAGE Land-2-Sea project, Integrated Ocean Discovery Program Expedition 401 drilled a new site, U1611, in the Alborán Sea. This basin is thought to have been part of the corridor that linked the Mediterranean with the Atlantic during the formation of the late Miocene salt giant. More than 600 m of sediments were recovered from Site U1611 spanning the early Messinian to early Pliocene. Here we present preliminary results and consider their implications for the origin and evolution of the Messinian Salinity Crisis.

How to cite: Ducassou, E., Flecker, R., and Williams, T. and the IODP Expedition 401 participants: Gateway to a salt giant: a new record of the Messinian Salinity Crisis from the westernmost part of the Mediterranean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22574, https://doi.org/10.5194/egusphere-egu24-22574, 2024.

17:45–18:00

Posters on site: Fri, 19 Apr, 16:15–18:00 | Hall X1

Display time: Fri, 19 Apr 14:00–Fri, 19 Apr 18:00
Chairpersons: Fadl Raad, Rachel Flecker
X1.155
|
EGU24-94
|
ECS
Erhan Karakuş and Erdoğan Tekin

Evaporitic precipitates exposed in the research area consist of gypsum. Seven gypsum lithofacies which massive gypsum (F1), bedded gypsum (F2), laminated gypsum (F3), nodular gypsum (F4), selenitic gypsum (F5), gypsum domes (F6) and satin-spar gypsum (F7) are recognized which are precipitated both shallow water and deep water environments in a restricted basin. Alabastrine, balatino, granoblastic and detritic textures are observed in petrographic studies. SEM/EDS analysis showed that celestite accompanied the gypsum precipitation. The strontium content of gypsum ranges between 197-22970 ppm which indicates the precipitation occured under marine conditions. Low barium content (2-129.4 ppm) indicates that there is no hydrothermal activity during gypsum precipitation, and arsenic, molybdenum and wolfram values lower than 1 ppm show that precipitation occurred under non-reductant conditions. Isotope values of δ34SSO4 range between 20.76‰ to 23.42‰ and δ18OSO4 ranges between 10‰ to 14.49‰ compatible with sulphur and oxygen values of Paleogene (Eocene-Oligocene) seawater. Furthermore, 87/86Sr values range from 0.707747‰  to 0.708558‰. These values correspond with late Eocene – early Oligocene seawater.

All data indicate that the precipitation of evaporite in the study area occurred under marine environmental conditions during the late Eocene - early Oligocene time interval, in the last phase of the regression processes of the remnant Eocene sea, as a result of the horizontal movements of the Eocene period seen almost everywhere in the Anatolian microcontinent.

How to cite: Karakuş, E. and Tekin, E.: Sedimentology and Geochemistry of Evaporites in Bâlâ-Karakeçili Basin (SE Ankara, Central Anatolia), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-94, https://doi.org/10.5194/egusphere-egu24-94, 2024.

X1.156
|
EGU24-5651
Konstantina Agiadi, Bryony Caswell, and Audrey Darnaude and the the Q-MARE - SEA-UNICORN workshop participants

Marine Functional Connectivity (MFC) refers to all the unimpeded flows of matter, genes and energy that are caused by the movements of marine life that occur at various spatial and temporal scales. Climate, palaeogeography, ocean circulation, biogeochemical cycles, evolution of Life and human activities control MFC over the long term. The geological and historical records offer valuable data on ecological and societal change that can be used to understand the evolution of MFC over time. We explain the links between these long-term drivers and MFC processes, as well as the diverse archives that can be used to study them: the sedimentary record, biogeochemical proxies, fossil assemblages, sclerochronological archives, genetic data, zooarchaeological remains, archaeological artefacts and historical sources.

How to cite: Agiadi, K., Caswell, B., and Darnaude, A. and the the Q-MARE - SEA-UNICORN workshop participants: Marine functional connectivity through the ages: geological and historical perspectives, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5651, https://doi.org/10.5194/egusphere-egu24-5651, 2024.

X1.157
|
EGU24-6137
|
ECS
Barbara Vesely, Mathias Harzhauser, Stefano Dominici, Efterpi Koskeridou, Danae Thivaiou, and Konstantina Agiadi

The Late Miocene was a period of major paleogeographic, climatic and biotic changes for the Mediterranean due to the restriction of the marine gateway to the Atlantic, which culminated to the Messinian Salinity Crisis (MSC), and the ongoing global climatic cooling. The Late Miocene ecological crisis very likely affected biodiversity of bivalves living in the Mediterranean during that time. In this study, we investigate the consequences of the Messinian Salinity Crisis and its preconditioning phase for the evolution of functional diversity of the Mediterranean bivalve fauna. The biodiversity of bivalves is quantified for the Tortonian, the pre-evaporitic Messinian and the Zanclean of the Mediterranean using the functional richness index, by considering the following bivalve species traits: lifestyle, depth range, maximum adult size, trophic role and substrate affinity. The analysis is based on a recently compiled dataset containing the updated fossil record of the Mediterranean bivalves for this time interval. The traits of the species in this dataset is obtained from online open-access databases and the literature. Our results support a decrease in the functional diversity of bivalves in the Mediterranean from the Tortonian to the Early Messinian and a full recovery in the Early Pliocene.

How to cite: Vesely, B., Harzhauser, M., Dominici, S., Koskeridou, E., Thivaiou, D., and Agiadi, K.: Functional diversity of the Mediterranean bivalve fauna across the Late Miocene ecological crisis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6137, https://doi.org/10.5194/egusphere-egu24-6137, 2024.

X1.158
|
EGU24-7757
|
ECS
Eliza Anton, Vlad Apotrosoaei, Iulian Pojar, Constantin Lazar, and Mihaela Melinte-Dobrinescu

This work presents the fluctuation pattern related to the modifications in the calcareous nannofossil diversity and abundance and shift in δ13C and δ18O isotopes identified in a succession situated in the Outer Moldavide nappe system of the Eastern Carpathians. The studied section is mainly made by clays and marls and includes a cm-thick volcanic ash layer dated as 13.32 ± 0.07 Ma (de Leeuw et al., 2018). We have pointed out the biotical response to the environmental changes that took place as a consequence of the “Badenian Evaporitic Crisis” of the Central Paratethyan Realm. 

Based on the biostratigraphy of the calcareous nannofossils, we identified the Badenian NN5 biozone, argued by the co-occurrence of Sphenolithus heteromorphus, Coronocyclus nitescens and Cyclicargolithus floridanus. The semiqualitative analysis point out the abundant presence of Helicosphaera spp. (mainly H. carteri), which together with Sphenolithus spp., Cyclicargolithus floridanus, Reticulofenestra pseudoumbilicus and Braarudosphaera bigelowii accounted up to 50% calcareous nannofossil assemblages. Most of the found specimens of Braarudosphaera bigelowii are “rounded” morphotypes, as previously identified in several Central Paratethyan Miocene successions (Melinte-Dobrinescu & Stoica, 2013; Peryt et al., 2021), whereas the “classical” specimens with sharp edges and trapezoidal segments are extremely rare. In the studied interval, the values of δ13C and δ18O isotopes show wide ranges, with a significant negative shift of δ13C isotope values towards the top of the studied succession.

References

De Leeuw, A., Tulbure, M., Kuiper, K.F., Melinte-Dobrinescu, M.C., Stoica, M., Krijgsman, W., 2018. New 40Ar/39Ar, magnetostratigraphic and biostratigraphic constraints on the termination of the Badenian Salinity Crisis: Indications for tectonic improvement of basin interconnectivity in Southern Europe. Global and Planetary Change, 169, 1-15.

Melinte-Dobrinescu, M.C., Stoica, M., 2013. Badenian Calcareous Nannofossil Fluctuation in the Eastern Carpathians: Palaeoenvironmental significance. Acta Palaeontologica Romaniae, 9(2), 47-56.

Peryt, D., Garecka, M., Peryt, T.M., 2021. Foraminiferal and calcareous nannoplankton biostratigraphy of the upper Badenian–lower Sarmatian strata in the SE Polish Carpathian Foredeep. Geological Quarterly, 65(18), 1-22.

How to cite: Anton, E., Apotrosoaei, V., Pojar, I., Lazar, C., and Melinte-Dobrinescu, M.: Middle Miocene calcareous nannofossil and isotope fluctuations in the Central Paratethyan Realm (Eastern Carpathians), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7757, https://doi.org/10.5194/egusphere-egu24-7757, 2024.

X1.159
|
EGU24-2095
|
ECS
Gustavo Kenji Lacerda Orita, Fernando Pérez-Valera, Jesús Soria, Enrique Gomez-Rivas, Hugo Corbi, Núria Sierra Ramirez, Jingjing Liu, and Luis Gibert

The Messinian Salinity crisis (MSC) was a major ecological crisis triggered by a combination of climatic and tectonic drivers that led to the progressive restriction of the Mediterranean, and culminated with the formation of large evaporite deposits. The Tabernas Basin (SE Spain) presents an exceptional Miocene sedimentary record, key for understanding the evolution of a turbiditic basin during the MSC. A composite stratigraphic section (>200m long) from the early Messinian to the early Pliocene shows different phases of the MSC in the Yesón Alto area (~20 km from Almeria City). Our study allows recognizing pre-evaporitic, syn-evaporitic, and post-evaporitic units. Two stratigraphic sections, one in the Yeson Alto and the other in Rambla de Lanujar were measured, sampled and documented for their petrological, geochemical and sedimentary facies characterization. Paleontological data, obtained through the analysis of foraminifera and marine macrofossils, enabled bio-stratigraphic dating. Magnetostratigraphic sampling along the pre- and post-evaporitic units was executed, although only the post-evaporitic deposits allowed the isolation of the primary Characteristic Remanent Magnetization. The preliminary results indicate that sedimentation rates during the pre-evaporitic phase were approximately four times greater than those of the correlated Abad member in the neighbouring Sorbas Basin The examined pre-evaporitic unit (90 m-thick) predominantly comprises fine-grained deposits intercalated with levels of sandstones and limestones. Abundant benthic and planktonic foraminifera, together with other marine fauna, facilitated the identification of 13 bioevents in the succession. The presence of Turborotalita quinqueloba and Orbulina taxa allows correlation with the last Messinian biozone (d) of Mediterranean biostratigraphy. Decimeter-thick beds of fossiliferous packstones/wackestones and barren mixed-siliciclastic carbonates occur toward the uppermost part of the unit, at the transition with the evaporites, indicating the initiation of evaporitic conditions preceding the deposition of the first gypsum bed. Soft-sediment deformation in these transitional beds suggests the occurrence of an important seismic event in Tabernas basins during initial stage of the MSC. The evaporitic unit in this area comprises only three cycles of massive selenitic gypsum beds intercalated with mudstones, in contrast with the Sorbas Basin, where up to 15 cycles have been described. δS analysis of these selenites reveals values expected for Miocene marine evaporites. A level with abundant marine fossils in the second inter-evaporitic level indicates at least an episode of dilution from >150gr/l to <40gr/l during the evaporitic deposition phase, where normal marine conditions prevailed. Towards the basin margins (Rambla de Lanujar section), the pre-evaporitic unit is characterized by the alternation of siliciclastic mudstones and gravity flow deposits, including boulder-grained breccias. The evaporitic unit is represented here by two beds of secondary nodular gypsum and centimetriclenite crystals forming Selenite supercones up to 2.5 m in diameter. Conformably overlying the last gypsum bed, a cyclic sequence of interbedded conglomeratic sandstones, matrix-supported conglomerates, and siliciclastic mudstones occurs. The paleomagnetic analysis reveals a reverse polarity for this unit, suggesting its correlation with the chron C3r. The presence of a fossiliferous assemblage, indicative of marine conditions with high salinity, also supports the conclusion that the post-evaporitic phase began during the Messinian times.

How to cite: Lacerda Orita, G. K., Pérez-Valera, F., Soria, J., Gomez-Rivas, E., Corbi, H., Sierra Ramirez, N., Liu, J., and Gibert, L.: From turbidites to evaporites: the Messinian Salinity crisis record of the Tabernas Basin (SE Spain), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2095, https://doi.org/10.5194/egusphere-egu24-2095, 2024.

X1.160
|
EGU24-4237
|
solicited
|
Highlight
Rachel Flecker, Emmanuelle Ducassou, and Trevor Williams and the IODP Expedition 401 participants

Warm and saline Mediterranean overflow today is an important driver of thermohaline circulation in the North Atlantic. In the latest Miocene, Mediterranean salinity varied dramatically as the Messinian salt giant formed. The precipitation of a ~1.5 km thick evaporite layer across the Mediterranean seafloor requires substantial changes both to the geometry of the Atlantic-Mediterranean gateway and the nature of exchange between the two basins. This salinity crisis was the consequence of on-going Africa-Eurasia collision, which formed, narrowed, and ultimately closed the two ancestral marine connections that pre-date the Gibraltar Strait. One of these connections is now preserved on land in southern Spain, the other in northern Morocco. Both the initiation of Mediterranean overflow, variations in its size and salinity, and the establishment of the present-day overflow pattern in the early Pliocene are likely to have impacted thermohaline circulation, climatic change and deep water sedimentation during the late Miocene and Pliocene.

IMMAGE (Investigating Miocene Mediterranean-Atlantic Gateway Exchange) is a land-2-sea drilling project designed to recover a complete record of Late Miocene-Pliocene exchange (8-4Ma) offshore with International Ocean Discovery Program (IODP) in both the Atlantic and Mediterranean and onshore with International Continental Scientific Drilling Program (ICDP) in Morocco and Spain. IODP Expedition 401 is the first element of the land-2-sea drilling to take place. At the time of abstract submission, Expedition 401 is at sea (December 2023-February 2024) in the process of recovering these critical records. We propose to present an overview of the sediments recovered during the expedition and initial shipboard analytical results.

How to cite: Flecker, R., Ducassou, E., and Williams, T. and the IODP Expedition 401 participants: Preliminary results of IODP Expedition 401, the first element of the Miocene Mediterranean-Atlantic Gateway (IMMAGE) Land-2-Sea drilling project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4237, https://doi.org/10.5194/egusphere-egu24-4237, 2024.

X1.161
|
EGU24-9263
Mihaela Melinte-Dobrinescu, Jean-Pierre Suc, and Popescu Speranta-Maria

In the Mediterranean, the latest Miocene was characterized by an exceptional event caused by the severe drop of the sea-level, leading to the Messinian Salinity Crisis (MSC). This event is characterized throughout the whole Mediterranean by the occurrence of thick evaporites in its deep basins and huge fluvial canyons within its margins (i.e., Cita et al., 1978; Cornée et al., 2006; Clauzon et al., 2008). This significant event triggered important faunas and floras modifications from the Mediterranean region and the surrounding basins, affecting the assemblage diversity, abundance, and composition. One of the most sensitive marine planktonic organisms, the calcareous nannoplankton, is well reflecting the palaeoenvironmental setting of the Messinian-Zanclean boundary interval.

This study presents the fluctuation pattern before, during and after the MSC, as identified in several studied successions of the Western and Eastern Mediterranean regions. Below the MSC, the calcareous nannofossil assemblages are characterized by high diversity and abundance, with dominance of the warm-water taxa, such as the discoasterids. At the beginning of the MSC, brackish environment dominated the late Messinian, which is barren of nannofossils, but some marine influxes are to be assumed, as in some Mediterranean areas the salinity was high enough to allow the nannoplankton survival. Calcareous nannoplankton assemblages recorded in the Messinian deposits (NN11b nannofossil subzone) are dominated by long-ranging and diagenetical resistant taxa (i.e., Reticulofenestra spp., Sphenolithus moriformis, and Coccolithus pelagicus). In most investigated sections, during the MSC, almost monospecific assemblages containing Braarudosphaera bigelowii, indicating strong salinity variations, were observed. Around the base and the top of the above-mentioned intervals, blooms of the calcareous dinoflagellate genus Thoracosphaera (suggesting unstable palaeosetting) were also identified. A marine environment is restored within the base of the Pliocene (early Zanclean), being most probably related to the important transgressive event, linked to the reconnection of Mediterranean with the open-ocean. The earliest Pliocene nannofossil assemblages of the NN12 zone are dominated by Discoaster and Sphenolithus taxa, indicative for warm-surface waters and an open-marine environment.

References

Cita, M.B., Ryan, W.B.F., Kidd, R.B., 1978. Sedimentation rates in Neogene deep sea sediments from the Mediterranean and geodynamic implications of their changes. Initial Reports DSDP 42A, 991–1002.

Clauzon, G., Suc, J.-P., Popescu, S.-M., Melinte-Dobrinescu, M.C., Quillévéré, F., Warny, S.A., Fauquette, S., Armijo, R., Meyer, B., Rubino, J.-L., Lericolais, G., Gillet, H., Çağatay, M.N., Ucarkus, G., Escarguel, G., Jouannic, G., Dalesme, F., 2008. Chronology of the Messinian events and paleogeography of the Mediterranean region s.l. CIESM Workshop Monographs 33, 31–37.

Cornée, J.-J., Ferrandini, M., Saint Martin, J.-P., Münch, P., Moullade, M., Ribaud Laurenti, A., Roger, S., Saint Martin, S., Ferrandini, J., 2006. The late Messinian erosional surface and the subsequent reflooding in the Mediterranean: new insights from the Melilla–Nador basin (Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology 230 (1–2), 129–154.

How to cite: Melinte-Dobrinescu, M., Suc, J.-P., and Speranta-Maria, P.: Calcareous nannofossil fluctuation related to the Messinian Salinity Crisis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9263, https://doi.org/10.5194/egusphere-egu24-9263, 2024.

X1.162
|
EGU24-9714
|
ECS
Francesca Lanterna, Francisco Javier Sierro, Andreas Mulch, and Iuliana Vasiliev

Between 5.97 and 5.33 Ma, the Mediterranean area was fundamentally impacted by the Messinian Salinity Crisis (MSC), a pivotal event that led to the transformation of the Mediterranean Sea into an extensive evaporitic basin, caused by rapidly changing environmental conditions. The MSC was caused by a combination of tectonic and climatic factors, resulting in severe connectivity restriction between the Mediterranean-Paratethys system and the Atlantic Ocean. The Sorbas Basin, thanks to its proximity to the Atlantic gateway and astronomically dated sedimentary succession, represents a key element in understanding the nature of palaeoceanographic transformations affecting the Western Mediterranean, preceding and announcing the MSC. Here, we present the first sea surface temperature (SST) and sea surface salinity (SSS) estimates recorded in Sorbas (i.e., Western Mediterranean) for the time interval between 7.3 to 6.0 Ma. The studied section includes the lower Abad Member (cyclic alternations of homogenous marls and indurated layers) and the upper Abad Member (cyclic alternations of sapropels, diatomites and marls). SSTs were estimated using TEX86 and UK´37 biomarker-based proxies, with cross validation at distinct levels. To further constrain the SSS changes, we combined the TEX86 and UK´37 based SST estimates with δ18O values measured at the same stratigraphic levels on the planktonic foraminifera Orbulina universa. The temperature estimates vary between 17 and 27 °C, with a pronounced cold (17 °C) peak at 7.1 Ma, following the restriction of the Betic and Rifian corridors. This cooling is followed by a generally warmer period lasting until 6.27 Ma, when a colder trend emerges and lasts until 6.18 Ma. A marked and sharp cooling from 27 to 18 °C is observed at 6 Ma, preceding the onset of the MSC. The SST-δ18O- calculated salinity ranges between 34 and 44 for most of the levels. However, several levels around 7.0, 6.74, 6.52 and 6.06 Ma, generated SSS values as low as 20, provoked by exceptionally low, yet not fully understood , δ18OO. universa component in our SSS calculation. The low values might be associated with a significant local influx of fresh water, considering the basin's restricted nature. When comparing our results to coeval records existing for the Eastern and Central Mediterranean (Agios Myron, Kalamaki and Monte dei Corvi), we notice a correlation of warmer and colder peaks across the Mediterranean, albeit with minor leads and lags. Importantly, the Sorbas SST values are well within the range of SSTs in the Eastern and Central Mediterranean. The SSS values of Sorbas are also within the range reported in the Eastern Mediterranean with the exception of those levels presumably affected by fresh water input. In the absence of a full explanation for the associated low-δ18OO. universa values, we observe the dominance of the C37:4 alkenone component, exclusively associated with fresh to brackish water environments, at some of these levels, strongly suggesting the occurrence of repeated fresh water influx into the basin.

How to cite: Lanterna, F., Sierro, F. J., Mulch, A., and Vasiliev, I.: Sorbas’ basin secrets unveiled: First record of Sea Surface Temperature and Sea Surface Salinity in the Western Mediterranean prior to the onset of the Messinian Salinity Crisis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9714, https://doi.org/10.5194/egusphere-egu24-9714, 2024.

X1.163
|
EGU24-11589
|
ECS
Enrico Nallino, Mathia Sabino, Francesco Dela Pierre, and Marcello Natalicchio

During the late Miocene Messinian salinity crisis (MSC), the Mediterranean Basin was transformed into the youngest salt giant in Earth's history. The acme phase of the MSC appeared to have coincided with a high-magnitude sea level drop, resulting in widespread erosion of sulphate evaporites deposited in shallow, marginal basins during the early phase of the MSC. Clastic gypsum deposits were consequently emplaced by submarine mass movements and low to high-density gravity flows in deep basins interfingering with thick halite deposits and hemipelagic, laminated sediments including organic-rich shales and laminar gypsum. Deciphering the depositional mechanisms behind hemipelagites is pivotal to reconstruct the paleoenvironmental and paleoceanographic conditions of deep Mediterranean basins during the MSC acme, including water depth and chemical, physical and biological characteristics of the aquatic system. This work focuses on the Racalmuto basin (Sicily, Italy), where a continuous sedimentary record from the pre-evaporitic Tripoli Fm. to the final stages of the MSC (Upper Gypsum) is exposed. Here, the MSC acme is recorded by gypsum turbidites and a chaotic interval, interbedded with laminar gypsum (“balatino”) formed by nucleation of gypsum crystals in the water column and their subsequent deposition on the sea floor (cumulate deposits). The most typical microfacies consist of an intricated network of gypsum crystals with a rhombohedral to prismatic elongated habit (< 1 mm in size). Petrographic observations show textural changes across the studied interval. The size of the crystals progressively decreases upwards across the studied section, possibly reflecting the increase in the saturation of the brine approaching the time of halite deposition in the deeper parts of the basin. The appearance of a diversified calcareous nannofossils assemblage, interbedded with gypsum laminae immediately below the bottom-grown selenitic gypsum of the Upper Gypsum (final stage of the MSC) suggests that normal marine conditions were intermittently established in the upper water column approaching the end of the MSC acme.

How to cite: Nallino, E., Sabino, M., Dela Pierre, F., and Natalicchio, M.: Laminar Gypsum deposited during the Messinian salinity crisis acme: a case study from the Racalmuto basin (Sicily, Italy)., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11589, https://doi.org/10.5194/egusphere-egu24-11589, 2024.

X1.164
|
EGU24-14271
Iuliana Vasiliev-Popa, Konstantina Agiadi, Katharina Methner, Jens Fiebig, and Andreas Mulch

Between 5.97-5.33 Ma, kilometre-thick evaporite units were deposited in the Mediterranean Basin during an event known as the Messinian Salinity Crisis (MSC). The MSC was characterised by a strongly negative hydrological budget, with a net evaporative loss of Mediterranean basin water exceeding precipitation and riverine runoff inputs. Despite evident proves of environmental crisis at the end of the Messinian, the Mediterranean domain still lacks quantitative estimates of temperature change across the transition from the (brackish) Lago Mare, marking the end of the Miocene, to the fully marine Pliocene. Here we reconstruct continental mean annual temperatures (MAT) using branched glycerol dialkyl glycerol tetraether (brGDGT) biomarkers for the time period corresponding to the MSC Stage 3 (5.55-5.33 Ma) and compare them with continental temperature values obtained from Δ47 clumped isotope geochemistry measured on paleosol carbonate nodules found at few locations in the Mediterranean basin. The well-preserved organic biomarkers were extracted from outcrops onshore and offshore covering a vast portion of the Mediterranean Basin; onshore (Malaga, Sicily, Cyprus) and offshore (DSDP core holes 124 and 134 from the Balearic abyssal plane, hole 374 from the Ionian Basin and hole 376 drilled west of Cyprus). Calculated MATs for the 5.55 to 5.33 Ma time interval show values around 16 to 19 ºC for the Malaga, Sicily and Cyprus outcrops. The MAT values calculated for DSDP Leg 13 holes 124, 134 and Leg 42A holes 374 and 376 are lower, around 13 to 16 ºC. Comparing the brGDGT-MAT values with Δ47-MAT values from carbonate nodules, shows high congruence between both approaches. For the northern Mediterranean Δ47-MAT is 24.6 ± 1.6 °C and brGDGT-MAT is 19 ± 4.8 ºC. For Cyprus Δ47-MAT is 20.3 ± 1.7 °C and brGDGT-MAT is 18 ºC ± 4.8 ºC. Given the very different nature of the used paleoproxies, the similarity of the obtained MAT values provides a strong indication of their (cross)validity in sampled sections. Additionally, the measured δ18O values for the carbonate nodules used for the Δ47-MAT show high δ18O of the soil water (in the range of -5 ±0.7‰) indicate highly evaporative conditions for the two onland sites where these were collected (Northern Apennines and Cyprus). We conclude that between 5.55 to 5.33 Ma the temperatures in the Mediterranean region were similar to present-day conditions, yet the region has suffered from excess evaporation as indicated by combined high δ18O values from (inorganic) carbonate nodules and δ2H values from (organic) biomarkers.

How to cite: Vasiliev-Popa, I., Agiadi, K., Methner, K., Fiebig, J., and Mulch, A.: A similarly warm but drier Mediterranean region at the Miocene - Pliocene transition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14271, https://doi.org/10.5194/egusphere-egu24-14271, 2024.

X1.165
|
EGU24-22572
Fadl Raad, Philippe Pezard, Cesar Viseras, Francisco J. Sierro, Luis M. Yeste, Andrea Schleifer, Johanna Lofi, Angelo Camerlenghi, and Giovanni Aloisi

The Sorbas Basin (Spain) has been a key study area for the understanding of the Late Miocene Messinian Salinity Crisis (MSC) (5.97-5.33 Ma). The MSC deposits of the Sorbas Basin consist of four sedimentary units: (1) the pre-MSC Abad marls topped by (2) the evaporitic Yesares gypsum member, followed by two non-evaporitic units known as the (3) Sorbas and (4) Zorreras members. These deposits have been widely studied almost exclusively in the several outcrops across the basin.


In 2021, four ~175m-long boreholes (named SG0, 1, 2 and 3) covering most of the MSC sequence were drilled, cored, and logged in the Marylen gypsum mine in Sorbas. These successions provided for the first time a continuous, non-outcropping succession of the MSC record. In addition to the recovered cores (~75% recovery), downhole geophysical logging data was obtained from the four holes and digital images of the area were collected with a drone.


Optical borehole wall images provide mm-scale images of the borehole walls, highlighting the sedimentological and structural characteristics of the deposits. Downhole geophysical measurements included acoustic velocity, electric resistivity and magnetic susceptibility, and natural spectral gamma ray. In addition to the petrophysical logs, a Vertical Seismic Profile, including a walk-away distributed acoustic sensing experiment, was acquired in holes SG2 and SG3.


Preliminary results confirmed not only the astronomical precession-driven cyclicity observed elsewhere in the Messinian gypsum, but also potentially higher-frequency cyclicity in the post-evaporitic Sorbas Mb. The Digital Outcrop Model allowed for a detailed correlation between the wells while recognizing various discontinuities and obtaining 3D data of geometry and dimensions of the different geobodies that respond to the interaction of auto and allocyclic processes that conditioned erosion and sedimentation in this western sector of the Mediterranean.

How to cite: Raad, F., Pezard, P., Viseras, C., Sierro, F. J., Yeste, L. M., Schleifer, A., Lofi, J., Camerlenghi, A., and Aloisi, G.: Multi-proxy characterization of the Messinian Salinity Crisis deposits in the Sorbas Basin (SE Spain): Implications on the paleo-environmental evolution during the uppermost Miocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22572, https://doi.org/10.5194/egusphere-egu24-22572, 2024.