EGU24-14401, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14401
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Integration of a Novel Flux Rope Model into Global MHD Simulations for Analyzing the Space Weather Effects of Coronal Mass Ejections

Ranadeep Sarkar, Jens Pomoell, Emilia Kilpua, and Eleanna Asvestari
Ranadeep Sarkar et al.
  • University of Helsinki, Physics, Helsinki, Finland (ranadeepsrkr6@gmail.com)

One of the major challenges in space weather forecasting is to reliably predict the magnetic structure of interplanetary coronal mass ejections (ICMEs) in the near-Earth space. In the framework of global MHD modelling, several efforts have been made to model the CME magnetic field from Sun to Earth. However, it remains challenging to deduce a flux-rope solution that can reliably model the magnetic structure of a CME. Spheromaks are one of the models that are widely used to characterize the internal magnetic structure of a CME. However, recent studies show that spheromaks are prone to experience a large rotation when injected in the heliospheric domain which may affect the prediction efficacy of CME magnetic fields at 1 AU. Moreover, the fully inserted spheromaks do not have any legs attached to the Sun. In addition, due to the inherent topology of the spheromak, the in-situ signature may exhibit a double flux-rope-like profile not reproduced by standard locally cylindrical flux rope models. Aiming to study the dynamics of CMEs exhibiting different magnetic topologies, we implement a new flux-rope model in “European heliospheric forecasting information asset” (EUHFORIA). Our flux-rope model includes an initially force-free toroidal flux-rope that is embedded in the low-coronal magnetic field. The dynamics of the flux rope in the low and middle corona is solved by a non-uniform advection constrained by the observed kinematics of the event. This results in a global non-toroidal loop-like magnetic structure that locally manifests as a cylindrical structure. At heliospheric distances, the evolution is modeled as a MHD process using EUHFORIA. As proof of concept, we use this tool to two CME events. Comparing the model results with the in-situ magnetic field configuration of the ICME at 1 au, we find that the simulated magnetic field profiles of the flux-rope are in very good agreement with the in-situ observations. Therefore, the framework of toroidal model implementation as developed in this study could prove to be a major step-forward in forecasting the geo-effectiveness of CMEs.

How to cite: Sarkar, R., Pomoell, J., Kilpua, E., and Asvestari, E.: Integration of a Novel Flux Rope Model into Global MHD Simulations for Analyzing the Space Weather Effects of Coronal Mass Ejections, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14401, https://doi.org/10.5194/egusphere-egu24-14401, 2024.