EGU24-14920, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-14920
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Sentinel-3 Land Ice Thematic Product: Evaluation of Greenland surface elevation and elevation change. 

Sebastian B. Simonsen1, Louise Sandberg Sørensen1, Stine K. Rose1, and Jérémie Aublanc2
Sebastian B. Simonsen et al.
  • 1Technical University of Denmark, DTU-Space, GEO, Kgs. Lyngby, Denmark (ssim@space.dtu.dk)
  • 2Collecte Localisation Satellites, Toulouse, France

The Sentinel-3 satellite series, developed by the European Space Agency as part of the Copernicus Programme, currently comprises two satellites, Sentinel-3A and Sentinel-3B, launched on 16th February 2016 and 25th April 2018, respectively. These satellites are equipped with various instruments, including a radar altimeter, enabling them to conduct operational topography measurements of the Earth's surface. The primary objective of the Sentinel-3 constellation concerning land ice is to provide highly accurate topographic measurements of polar ice sheets. This data is crucial in supporting, e.g., ice sheet mass balance studies. Unlike previous missions that utilized conventional pulse-limited altimeters, Sentinel-3 employs an advanced SAR Radar ALtimeter (SRAL) with delay-doppler capabilities, resulting in significantly enhanced spatial resolution for surface topography measurements. The Sentinel-3 Mission Performance Cluster (MPC) is tasked with monitoring the stability and accuracy of the mission. Here, we report on the latest findings on the Greenland ice sheet.

ESA and the MPC recently developed a specialized delay-Doppler Level-2 processing chain (thematic products) over three dedicated surfaces: Inland Waters, sea ice, and Land Ice. For land ice, delay-Doppler processing with an extended window has been implemented to enhance the coverage of the ice sheet margins. With the improved coverage at the ice sheet margins, we can now access and monitor the fastest-changing regions of the Greenland ice sheet. Hence, the essential climate variable surface elevation change (SEC) can directly be derived solely from Sentinel-3 and, due to the operational concept of the Sentinel program, is ensured to provide continuous observations until at least 2030. Here, we present the latest SEC results based on the land ice thematic product and compare it to the other polar altimetric missions (CryoSat-2 and ICESat-2) to provide a benchmark for the performance of the Sentinel-3 mission for the time to come with less abundant polar radar altimeters.   

How to cite: Simonsen, S. B., Sandberg Sørensen, L., Rose, S. K., and Aublanc, J.: Sentinel-3 Land Ice Thematic Product: Evaluation of Greenland surface elevation and elevation change. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14920, https://doi.org/10.5194/egusphere-egu24-14920, 2024.