EGU24-15648, updated on 31 Mar 2024
https://doi.org/10.5194/egusphere-egu24-15648
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Paleoproductivity and surface water dynamics evolution during the MIS 31 in the Shackleton Site as revealed Coccolithophores

Jose-Abel Flores1, Barbara Balestra2, William Clark3, Francisco José Jiménez-Espejo4, Junichiro Kuroda5, Emilia Salgueiro6, Joan Grimalt7, Timothy Herbert8, Maria Angeles Bárcena1, Fatima Abrantes, David Hodell9, Carlos Alvarez Zarikian10, and Expedition 397 Scientific Party
Jose-Abel Flores et al.
  • 1Salamanca, Geology, Salamanca, Spain (flores@usal.es)
  • 2American University, USA
  • 3University of Alabama, USA
  • 4IACT-CSIC, Granada, Spain
  • 5University of Tokio, Japan
  • 6IPMA and CCMAR, Portugal
  • 7IDAEA-CSIC, Barcelona, Spain
  • 8Brown University, USA
  • 9University of Cambridge, United Kingdom
  • 10IODP, Texas A&M University, College Station, Texas, USA

Marine Isotope 31 Stage (MIS-31) records one of the highest high-latitude precession-paced insolation values of the last 5 million years (Laskar et al., 2004). According to this configuration, some studies (e.g. Raymo et al., 2006) predicts a +20 m eustatic sea-level rise for this time interval, reflecting significant retreat of some combination of the West Antarctic Ice Sheet, marginal East Antarctic ice, and the Greenland Ice Sheet, and consequently significant variations in the ocean and climate dynamics at global scale.

In this study we show data of variability in the coccolithophore assemblage from IODP Site 1385 (Shackleton Site, IODP 339 and IODP 397) in the interval ca. 1 Ma (close to the Jaramillo event). These sediments are sensitive recorders of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) oscillations, which makes this site a significant location to test the interhemispheric connection hypotheses.

Peaks in abundance of Gephyrocapsa (<3mm), as well as in other Noelarhaddaceae such as Reticulofenestra asanoi and other morphotypes (equivalent with minimum differences at total coccoliths recorded), were interpreted as a signal of paleoproductivity, revealing strong changes during MIS 31. Alternatively, cold water indicators (Coccolithus pelagicus ) or the census of Helicosphaera carteri l(inked to stratification processes) are considered, showing an alternative pattern along the studied interval. After the refinement of the age-model, these data should be compared with other records in close or remote areas (e.g. Flores and Sierro, 2007, Maiorano et al., 2009), to understand the relevance of this interval, particularly sensible in the Antarctic environment, where a potential relevant melting peak was suggested (Scherer et al., 2009).

Preliminary results (Jiménez Espejo et al., 2013) reveal a distinct turnover during MIS 31 and different evolution of surface and bottom-waters that could be linked with enhanced circulation of NADW during warm periods. This scenario is consistent with stratification pulses interpreted at the top of MIS 32, where cold and stratified water pulses are influenced by and increase in reworked material coming from proximal regions as a result of eustatic sea-level drops.

 

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., & Levrard, B. Astrophys. 428, 261-285 (2004).

Raymo, M., Lisiecki, L., Nisancioglu, K. Science. 313, 492-495 (2006).

Maiorano, P., Marino, M., Flores, J.A. Mar. Micropaleontol. 71, 166–175 (2009).

Flores, J.A., Sierro, F.J. Deep-Sea Res. II 54 (21–22), 2432–2442. (2007)

Scherer, R. P., Bohaty, S., Dunbar, R., Esper, O., Flores, J., Gersonde, R., Harwood, D., Roberts, A., and Taviani, M. Geophysical Research Letters. 35, (2009)

Jiménez Espejo et al., 11th INTERNATIONAL CONFERENCE ON PALEOCEANOGRAPHY

1-6 September, 2013. Sitges - Barcelona (2013)

 

How to cite: Flores, J.-A., Balestra, B., Clark, W., Jiménez-Espejo, F. J., Kuroda, J., Salgueiro, E., Grimalt, J., Herbert, T., Bárcena, M. A., Abrantes, F., Hodell, D., Alvarez Zarikian, C., and 397 Scientific Party, E.: Paleoproductivity and surface water dynamics evolution during the MIS 31 in the Shackleton Site as revealed Coccolithophores, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15648, https://doi.org/10.5194/egusphere-egu24-15648, 2024.