The glaciers on the High Russian Arctic archipielago Novaya Zemlya have been losing roughly 10 Gt/yr over the past decade, 5 Gt/yr more than in the one before. While earlier research pointed to ocean discharge as driver of the acceleration, we present new results that show that foehn events, triggered by atmospheric rivers, led to the most severe melt events in the recent times. We use output of the regional atmospheric model MAR, together with geodetic observations from CryoSat-2, and reanalysis data (CARRA, ERA5, MERRA-2) to show that roughly 70 % of the melt occurs during atmospheric rivers episodes. Between 1990 and 2022, 45 of the 54 days with more than 1 Gt melt were accompanied by foehn winds. We conclude that the representation of atmospheric rivers and foehn winds in models is crucial for accurate projections of the future glacier evolution.
How to cite:
Haacker, J., Wouters, B., Fettweis, X., Box, J., and Glissenaar, I.: Atmospheric drivers of the rapid decline of Novaya Zemlya's glaciers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16268, https://doi.org/10.5194/egusphere-egu24-16268, 2024.
Share
Please decide on your access
Please use the buttons below to download the supplementary material or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.