ITS2.8/AS4.10 | Polar Meteorology and Climate and their Links to the Rapidly Changing Cryosphere
EDI
Polar Meteorology and Climate and their Links to the Rapidly Changing Cryosphere
Co-organized by CR7
Convener: Diana Francis | Co-conveners: Michiel van den Broeke, Michelle Maclennan
Orals
| Thu, 18 Apr, 10:45–12:30 (CEST)
 
Room 2.17
Posters on site
| Attendance Thu, 18 Apr, 16:15–18:00 (CEST) | Display Thu, 18 Apr, 14:00–18:00
 
Hall X5
Posters virtual
| Attendance Thu, 18 Apr, 14:00–15:45 (CEST) | Display Thu, 18 Apr, 08:30–18:00
 
vHall X5
Orals |
Thu, 10:45
Thu, 16:15
Thu, 14:00
The polar climate system is strongly affected by interactions between the atmosphere and the cryosphere. Processes that exchange heat, moisture and momentum between land ice, sea ice and the atmosphere, such as katabatic winds, blowing snow, ice melt, polynya formation and sea ice transport, play an important role in local-to-global processes. Atmosphere-ice interactions are also triggered by synoptic weather phenomena such as cold air outbreaks, polar lows, atmospheric rivers, Foehn winds and heatwaves. However, our understanding of these processes is still incomplete. Despite being a crucial milestone for reaching accurate projections of future climate change in Polar Regions, deciphering the interplay between the atmosphere, land ice and sea ice on different spatial and temporal scales, remains a major challenge.
This session aims at showcasing recent research progress and augmenting existing knowledge in polar meteorology and climate and the atmosphere-land ice-sea ice coupling in both the Northern and Southern Hemispheres. It will provide a setting to foster discussion and help identify gaps, tools, and studies that can be designed to address these open questions. It is also the opportunity to convey newly acquired knowledge to the community.
We invite contributions on all observational and numerical modelling aspects of Arctic and Antarctic meteorology and climatology, that address atmospheric interactions with the cryosphere. This may include but is not limited to studies on past, present and future of:
- Atmospheric processes that influence sea-ice (snow on sea ice, sea ice melt, polynya formation and sea ice production and transport) and associated feedbacks,
- The variability of the polar large-scale atmospheric circulation (such as polar jets, the circumpolar trough and storm tracks) and impact on the cryosphere (sea ice and land ice),
- Atmosphere-ice interactions triggered by synoptic and mesoscale weather phenomena such as cold air outbreaks, katabatic winds, extratropical cyclones, polar cyclones, atmospheric rivers, Foehn winds and heatwaves,
- Role of clouds in polar climate and impact on the land ice and sea ice through interactions with radiation,
- Teleconnections and climate indices and their role in land ice/sea ice variability.

Orals: Thu, 18 Apr | Room 2.17

Chairpersons: Diana Francis, Michelle Maclennan, Michiel van den Broeke
Antarctica
10:45–10:50
10:50–11:00
|
EGU24-3624
|
ECS
|
On-site presentation
Rebecca Baiman, Andrew C. Winters, Benjamin Pohl, Vincent Favier, Jonathan D. Wille, and Kyle R. Clem

Although rare, atmospheric rivers (ARs) substantially influence the interannual variability of Antarctic surface mass balance. We identify characteristics unique to AR environments by comparing (1) AR, (2) Analog (environments that feature high-low pressure couplets, similar to AR environments, but no AR), and (3) Top AR (high-precipitation AR timesteps) during 1980–2019 around Antarctica. We find significant differences between AR and Analog environments including more intense and poleward-shifted mid-tropospheric geopotential height couplets as well as larger atmospheric moisture anomalies. We find similar significant enhancement in synoptic-scale dynamic drivers of Top ARs compared to AR environments, but no significant difference in local integrated water vapor anomalies. Instead, our results highlight the importance of large-scale dynamic drivers of Top AR timesteps, including connections between high-precipitation ARs and Rossby waves excited by tropical convection. This deeper understanding of Antarctic AR environments provides context for interpreting future changes to the Antarctic surface mass balance.

How to cite: Baiman, R., Winters, A. C., Pohl, B., Favier, V., Wille, J. D., and Clem, K. R.: Discriminators of Antarctic Atmospheric River Environments            , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3624, https://doi.org/10.5194/egusphere-egu24-3624, 2024.

11:00–11:10
|
EGU24-3880
|
ECS
|
Highlight
|
On-site presentation
Léonard Barthelemy, Francis Codron, Vincent Favier, and Jonathan Wille

Atmospheric Rivers (AR) are extreme hydrological events that have strong impacts on the different components of the Antarctic ice sheet surface mass balance (SMB), through both snow accumulation and surface melt due to heating and rain. Their evolving characteristics are therefore important to understand for an accurate prediction of future SMB changes.

We use here an ensemble of simulations of the mid-21st century climate using the IPSL-CM6 model. The future Antarctic ARs are identified using a detection algorithm adapted to the region, and taking into account in the detection threshold (based on moisture fluxes) the rising background moisture in a warmer climate. While a constant detection threshold leads to a continuous increase of the number of ARs detected, the use of this adaptative threshold leads instead to a relatively stable frequency of occurence, but with a larger penetration over Antarctica (+5% occurence over the continent). In addition, a wave number 3 component appears in the future change in frequency, as well as in AR-related snowfall.

While the number of ARs does not change much, their intensity, as measured by the associated water vapor transport, increases in line with the Clausius-Clapeyron relation. Their different impacts on the SMB also become larger, with both increasing snowfall, and surface melt and rainfall in the coastal regions. The direct effect on the SMB is however dominated by the increase in snow accumulation.

How to cite: Barthelemy, L., Codron, F., Favier, V., and Wille, J.: Future Atmospheric Rivers in Antarctica using CMIP6-IPSL model : intensity and impacts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3880, https://doi.org/10.5194/egusphere-egu24-3880, 2024.

11:10–11:20
|
EGU24-6344
|
On-site presentation
Andrew Orr, Pranab Deb, Kyle Clem, Ella Gilbert, David Bromwich, Fredrik Boberg, Steve Colwell, Nicolaj Hansen, Matthew Lazzara, Priscilla Mooney, Ruth Mottram, Masashi Niwano, Tony Phillips, Denis Pishniak, Carleen Reijmer, Willem Jan van de Berg, Stuart Webster, and Xun Zou

We calculate a regional surface “melt potential” index (MPI) over Antarctic ice shelves that describes the frequency (MPI-freq, %) and intensity (MPI-int, K) of daily maximum summer temperatures exceeding a melt threshold of 273.15 K. This is used to determine which ice shelves are vulnerable to melt-induced hydrofracture and is calculated using near-surface temperature output for each summer from 1979/80 to 2018/19 from two high-resolution regional atmospheric model hindcasts (using the MetUM and HIRHAM5). MPI is highest for Antarctic Peninsula ice shelves (MPI-freq 23-35%, MPI-int 1.2-2.1 K), lowest (2-3%, < 0 K) for Ronne-Filchner and Ross ice shelves, and around 10-24% and 0.6-1.7 K for the other West and East Antarctic ice shelves. Hotspots of MPI are apparent over many ice shelves, and they also show a decreasing trend in MPI-freq. The regional circulation patterns associated with high MPI values over West and East Antarctic ice shelves are remarkably consistent for their respective region but tied to different large-scale climate forcings. The West Antarctic circulation resembles the central Pacific El Niño pattern with a stationary Rossby wave and a strong anticyclone over the high-latitude South Pacific. By contrast, the East Antarctic circulation comprises a zonally symmetric negative Southern Annular Mode pattern with a strong regional anticyclone on the plateau and enhanced coastal easterlies/weakened Southern Ocean westerlies. Values of MPI are 3-4 times larger for a lower temperature/melt threshold of 271.15 K used in a sensitivity test, as melting can occur at temperatures lower than 273.15 K depending on snowpack properties.

How to cite: Orr, A., Deb, P., Clem, K., Gilbert, E., Bromwich, D., Boberg, F., Colwell, S., Hansen, N., Lazzara, M., Mooney, P., Mottram, R., Niwano, M., Phillips, T., Pishniak, D., Reijmer, C., van de Berg, W. J., Webster, S., and Zou, X.: Characteristics of surface melt potential over Antarctic ice shelves based on regional atmospheric model simulations of summer air temperature extremes from 1979/80 to 2018/19, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6344, https://doi.org/10.5194/egusphere-egu24-6344, 2024.

11:20–11:30
|
EGU24-10663
|
ECS
|
Highlight
|
On-site presentation
Srinidhi Gadde and Willem Jan van de Berg

Blowing snow transport is an essential polar boundary layer process and constitutes the major ablation term in the Antarctic ice sheet's surface mass balance (SMB). Here, we present an update to the blowing snow model in the Regional Atmospheric Climate Model (RACMO), version 2.3p3, to include the effect of blowing snow sublimation and transport in the prognostic equations for temperature and water vapour. Updates rectify the numerical artefacts in the modelled blowing snow flux variation with wind speed. Updates include the replacement of uniformly distributed ice particle radius, which limited the maximum ice particle radius to ≤ 50 μm, with an exponentially increasing ice particle radius distribution to include all the relevant range of radii between 2 to 300 μm without any additional computational overhead. We compare the model results against the observations from site D47 in Adèlie Land, East Antarctica. These updates correct the numerical artefacts observed in the previous model results, and RACMO successfully predicts the power-law variation of the blowing snow transport flux with wind speed. Updates also improve the prediction of the magnitude of the blowing snow fluxes. In addition, at site D47, we obtain an average blowing snow layer depth of 230±116 μm, which falls within the range of values obtained from satellite observations. A qualitative comparison of the simulated blowing snow frequency from RACMO with CALIPSO satellite observations shows that the simulated frequency matches well with the satellite product. Compared to the previous model version for the period 2000–2010, the contribution of integrated blowing snow sublimation is increased by 30%, with a yearly average of 176±4 Gt yr-1. The increase amounts to 1.2% reduction in the integrated SMB of the Antarctic ice sheet. The updates also introduce changes in the climatology of blowing snow in Antarctica. Specifically, we observe significant changes in the sublimation of interior regions of the escarpment zone of Antarctica.

How to cite: Gadde, S. and van de Berg, W. J.: Contribution of blowing snow sublimation to the surface mass balance of Antarctica, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10663, https://doi.org/10.5194/egusphere-egu24-10663, 2024.

11:30–11:40
|
EGU24-20816
|
On-site presentation
Irina V. Gorodetskaya, Claudio Durán-Alarcón, Penny Rowe, Xun Zou, Sangjong Park, and Vincent Favier

The recent two years have been marked by many regional climate-state extremes particularly over the southern polar region including record-high surface melt over the Antarctic Peninsula in February 2022 (Gorodetskaya et al., 2023; Zou et al., 2023), the strongest heatwave ever recorded over East Antarctica bringing extreme inland snowfall and coastal surface melt in March 2022 (Wille et al., 2024), and an extremely low Antarctic sea ice area observed in winter 2022 outpaced by the lowest record in winter 2023 (Purich and Doddridge, 2023). Increased magnitude and probability of occurrence of extreme events, along with their high impacts on the Antarctic surface mass balance require detailed understanding of the underlying large-scale, regional and local drivers, using comprehensive and high-resolution observations and modeling. Here we will present analysis of extreme surface melt events and their drivers based on targeted observations conducted during 2022-2023 over the northern Antarctic Peninsula, including two austral summer campaigns and the winter Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) enhanced observational period. Cloud and precipitation profiles using radar and lidar measurements are analyzed together with thermodynamic state of the troposphere from radiosonde observations and surface radiative fluxes with a specific focus on the extreme warm events characterized by surface melt and/or rainfall. In particular, the February 2022 extreme warm event showed very high downwelling longwave flux (up to 350 W/m2) due to the low warm-base liquid-containing clouds. Frequent occurrence of supercooled liquid water with low and warm cloud-bases is characteristic of the site during both summer and winter seasons and plays an important role in surface melt events. Another key factor during warm events is the transition from snowfall to rainfall (both with height in the vertical column, indicated by melt layer height derived from the precipitation radar measurements, and with time over the course of the event). Using radiosonde profiling, we identify layers of maximum moisture and heat transport into the Antarctic Peninsula, which showed an outstanding magnitude during the hot spell in February 2022 associated with an intense atmospheric river and which we further compare to other observed warm events. Significant differences are found for cloud and precipitation properties between ground-based measurements and ERA5 reanalysis, prompting the use of state-of-art high-resolution observations to improve representation of relevant processes in the models particularly during surface melt events.

Funding acknowledgements: Portuguese Polar Program projects APMAR/TULIP/APMAR2; FCT projects MAPS and ATLACE; ANR project ARCA; KOPRI; NSF awards 2127632 and 2229392.

References:

Gorodetskaya et al. (2023): Record-high Antarctic Peninsula temperatures and surface melt in February 2022: a compound event with an intense atmospheric river. npj Clim Atmos Sci, https://doi.org/10.1038/s41612-023-00529-6

Purich and Doddridge (2023): Record low Antarctic sea ice coverage indicates a new sea ice state. Commun Earth Environ, https://doi.org/10.1038/s43247-023-00961-9

Wille et al (2024): The Extraordinary March 2022 East Antarctica “Heat” Wave. Part I: Observations and Meteorological Drivers. J. Climate, https://doi.org/10.1175/JCLI-D-23-0175.1.

Zou et al (2023): Strong warming over the Antarctic Peninsula during combined atmospheric River and foehn events: Contribution of shortwave radiation and turbulence. J. Geophys. Res. Atmos., https://doi. org/10.1029/2022JD038138 

 

How to cite: Gorodetskaya, I. V., Durán-Alarcón, C., Rowe, P., Zou, X., Park, S., and Favier, V.: Surface melt over the Antarctic Peninsula: targeted observations capturing recent extreme events, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20816, https://doi.org/10.5194/egusphere-egu24-20816, 2024.

11:40–11:50
|
EGU24-13437
|
On-site presentation
Deniz Bozkurt, Jorge F. Carrasco, Raul R. Cordero, Francisco Fernandoy, Alvaro Gómez, Benjamin Carillo, and Bin Guan

Recent research has extensively analyzed summertime atmospheric river (AR) events in the Antarctic Peninsula (AP) using ground-based and atmospheric observations, yet a significant gap remains in understanding the occurrence and impacts of ARs during the Antarctic winter. This study focuses on an extraordinary warming event in the AP between 1 and 3 July 2023, utilizing data from recent wintertime field campaigns and ERA5 reanalysis. On 2 July, the Frei station in northern AP recorded a remarkable daily maximum near-surface air temperature of 2.7°C, significantly higher than the mean winter value of -3.8°C and surpassing the winter 99th percentile of 1.8°C. On 2-3 July, at least 6 hours of liquid precipitation were recorded, as corroborated by ERA5 data, leading to notable rain-on-snow and melt events. This occurrence challenges conventional expectations, as liquid precipitation during the depths of the southern winter is exceedingly rare in Antarctica. Radiosonde observations indicated a substantial elevation of the freezing level to about 650 meters, a stark contrast to the 20 meters observed before the event. These observations also revealed a moist and nearly saturated atmospheric profile. The event was synoptically characterized by a distinct trough over the Bellingshausen Sea and a pronounced northwest-southeast oriented blocking ridge from the southwestern Atlantic to the Weddell Sea, resulting in a dipole-like pressure pattern around the AP. These conditions were instrumental in the development of an AR with a north-to-south flow. This flow was marked by maximum integrated vapor transport values exceeding 500 kg m-1 s-1, channeling warm, moisture-laden air from continental South America towards the AP. A long-term winter trend analysis reveals a significant strengthening of the dipole pattern, which correlates with increased frequencies of ARs and consequently leads to notable warm temperature anomalies over the northern AP. The study underscores the importance of understanding the complex relationship between local, synoptic conditions, and the dynamics of ARs in influencing winter climate patterns in the AP. This study's ongoing high-resolution simulations and isotope analysis aim to uncover the detailed characteristics and isotopic signatures of this extraordinary warming event, enhancing our understanding of its origins and impacts.

How to cite: Bozkurt, D., Carrasco, J. F., Cordero, R. R., Fernandoy, F., Gómez, A., Carillo, B., and Guan, B.: Atmospheric river brings warmth and rainfall to the northern Antarctic Peninsula during the mid-austral winter of 2023, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13437, https://doi.org/10.5194/egusphere-egu24-13437, 2024.

Arctic & Greenland
11:50–12:00
|
EGU24-12356
|
ECS
|
On-site presentation
Chelsea Parker, Melinda Webster, Priscilla Mooney, Elina Valkonen, and Linette Boisvert

The Arctic is warming four times faster than the rest of the globe, with a concurrent rapid loss of sea ice extent and thickness. Cyclones are synoptic weather events that transport heat and moisture into the Arctic, and have complex impacts on sea ice, marine ecosystems, and socio-economic activities. However, the effect of a changing climate on Arctic cyclone behavior remains poorly understood. This study uses a combination of reanalysis data, cyclone tracking techniques, and high-resolution numerical modeling to explore the effect of recent and future climate change on Arctic cyclone behavior across seasons.

This work first examines the relative importance of changes in local surface conditions and turbulent fluxes and broader changes in pressure patterns, steering flow, and baroclinicity with recent climate change in governing cyclone frequency, intensity, and trajectories. Our analysis suggests that cyclone activity is shifting throughout the autumn with competing effects of turbulent fluxes and large-scale conditions. With recent climate change, sea ice is declining, and surface temperatures and turbulent fluxes are increasing, resulting in slight increases in Autumn cyclone intensity. In early autumn, cyclone frequency and trajectories are strongly governed by the large-scale flow despite increases in surface turbulent fluxes and baroclinicity. By late autumn, land-sea temperature contrast is increasing with sea ice loss, and changes in baroclinicity and large-scale flow work in concert to increase cyclone activity in the Arctic.

This work then uses regional, high resolution, convection-permitting Weather Research and Forecasting (WRF) model simulations to demonstrate the sensitivity of cyclone characteristics to recent and future climate change. Simulations with downscaled CMIP6 global climate projections reveal that future sea ice loss and increasing surface temperatures by the year 2100 drive large increases in the near-surface vertical temperature gradient, sensible and latent heat fluxes into the atmosphere, and deep convection during spring cyclone events. The changes in the future (warmer) climate alter cyclone trajectories and increase and prolong intensity, with significantly increased wind speeds, temperatures, and precipitation. Such changes in cyclone lifecycles and characteristics may exacerbate sea ice loss and Arctic warming through positive feedback mechanisms. The increasing extreme nature of weather events such as Arctic cyclones has important implications for atmosphere-ice-ocean interactions in the new Arctic.

How to cite: Parker, C., Webster, M., Mooney, P., Valkonen, E., and Boisvert, L.: Understanding local and large-scale changes in the Arctic and the effect on Cyclone activity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12356, https://doi.org/10.5194/egusphere-egu24-12356, 2024.

12:00–12:10
|
EGU24-12942
|
Highlight
|
On-site presentation
Rune Grand Graversen, Tuomas Heiskanen, Richard Bintanja, and Heiko Goelzer

Recent Greenland ice-sheet melt constitutes an alarming contribution to global sea-level rise. Observations indicate an approximate balance of the ice sheet until the late 1990s, after which a strong increase in melting occurred. This cannot be attributed linearly to gradually-increasing global warming. Instead the abrupt shift is suggested to be linked to atmospheric circulation changes, although causality is not fully understood. Here we show that changes of atmospheric waves over Greenland have significantly contributed to the shift into a strong melting state. This is evident from applying a newly-developed methodology effectively decomposing atmospheric flow patterns into parts associated with Rossby waves and smaller perturbations. A westerly-flow reduction, consistent with anthropogenic Arctic warming, affected transports by atmospheric waves and led to a decrease in precipitation and an increase in surface warming, contributing to ice-sheet mass loss, in particular over the southwestern regions. Hence the Greenland ice-sheet melt is an example of a climate response non-linearly coupled to global warming.

How to cite: Graversen, R. G., Heiskanen, T., Bintanja, R., and Goelzer, H.: Abrupt increase in Greenland melt governed by atmospheric wave change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12942, https://doi.org/10.5194/egusphere-egu24-12942, 2024.

12:10–12:20
|
EGU24-16268
|
ECS
|
On-site presentation
Jan Haacker, Bert Wouters, Xavier Fettweis, Jason Box, and Isolde Glissenaar
The glaciers on the High Russian Arctic archipielago Novaya Zemlya have been losing roughly 10 Gt/yr over the past decade, 5 Gt/yr more than in the one before. While earlier research pointed to ocean discharge as driver of the acceleration, we present new results that show that foehn events, triggered by atmospheric rivers, led to the most severe melt events in the recent times. We use output of the regional atmospheric model MAR, together with geodetic observations from CryoSat-2, and reanalysis data (CARRA, ERA5, MERRA-2) to show that roughly 70 % of the melt occurs during atmospheric rivers episodes. Between 1990 and 2022, 45 of the 54 days with more than 1 Gt melt were accompanied by foehn winds. We conclude that the representation of atmospheric rivers and foehn winds in models is crucial for accurate projections of the future glacier evolution.

How to cite: Haacker, J., Wouters, B., Fettweis, X., Box, J., and Glissenaar, I.: Atmospheric drivers of the rapid decline of Novaya Zemlya's glaciers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16268, https://doi.org/10.5194/egusphere-egu24-16268, 2024.

12:20–12:30
|
EGU24-18137
|
ECS
|
Highlight
|
On-site presentation
Christopher Barrell, Ian Renfrew, John Methven, and Andrew Elvidge

Melt ponds play a key role in the Arctic sea-ice surface energy budget. Their reduced albedo compared to the surrounding ice and snow surfaces increases the absorption of short-wave radiation and enhances ice melt. Further, melt ponds affect atmosphere-ice-ocean surface turbulent exchanges of heat, moisture and momentum, which influence the structure of the overlying boundary layer. 

Simulation of melt ponds and surface exchange over sea ice in coupled numerical weather prediction models depends on parameterization schemes that need further development. However, the relationship between sea ice surface conditions and the overlying boundary layer is difficult to constrain due to the lack of in-situ observations in Arctic regions. 

We carried out the Arctic Summertime Cyclones project field campaign in July-August 2022 to make observations of sea-ice surface exchange and cyclone dynamics. Using the British Antarctic Survey MASIN Twin Otter aircraft we observed a range of sea ice surface types, some with a very high melt pond fraction during warm melt conditions, and the overlying atmospheric boundary layer. 

Using these observations to evaluate forecasts from the UK Met Office Unified Model, we show that a combination of deficiencies in the model sea ice field, melt pond representation and surface exchange parameterizations are linked to errors in the simulated boundary layer structure. In particular, the model consistently exhibits surface temperature and albedo biases over sea ice with melt ponds that act as sources of error in the surface energy budget.

How to cite: Barrell, C., Renfrew, I., Methven, J., and Elvidge, A.: Melt ponds and atmosphere-ice-ocean exchange in the UK Met Office Unified Model during the Arctic Summertime Cyclones field campaign, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18137, https://doi.org/10.5194/egusphere-egu24-18137, 2024.

Posters on site: Thu, 18 Apr, 16:15–18:00 | Hall X5

Display time: Thu, 18 Apr 14:00–Thu, 18 Apr 18:00
Chairpersons: Diana Francis, Michiel van den Broeke, Michelle Maclennan
Polar Meteorology Poster - On-site
X5.114
|
EGU24-10419
Yingfei Fang, James Screen, Song Yang, Xiaoming Hu, and Shuheng Lin

The circulation pattern conducive to summer surface melt over the Ross Ice Shelf in West Antarctica is intricately linked to sea surface temperature anomalies in the tropical central-eastern Pacific associated with El Niño, along with atmospheric heating anomalies over western Australia. Our study utilizes 61 models within the Coupled Model Intercomparison Project (CMIP6) and reveals their ability to effectively simulate these primary drivers that influence the circulation pattern over West Antarctica.

El Niño emerges as a crucial force shaping atmospheric circulation anomalies over the Ross Sea, inducing two distinct wave trains toward West Antarctica—one originating from the central Pacific and the other from the Maritime Continent. Furthermore, irrespective of El Niño, anomalous atmospheric heating over western Australia emerges as another significant forcing, initiating a Rossby wave train that extends from subtropical Australia to the Ross Sea.

This comprehensive assessment advances our understanding of the remote forcings steering climate variability in West Antarctica during the austral summer. Moreover, it instills confidence in the predictability of future climate changes in this region.

How to cite: Fang, Y., Screen, J., Yang, S., Hu, X., and Lin, S.: Unraveling the Forcings behind West Antarctic Summer Melt: CMIP6 Perspectives on Remote Climate Drivers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10419, https://doi.org/10.5194/egusphere-egu24-10419, 2024.

X5.115
|
EGU24-14236
|
ECS
|
Mauricio Jimenez Garcia, John Mejia, Juan Jose Henao, Noemi Troche, Alvaro Rafael Martinez, and Kevin Alexander Chicaeme

Summertime aviation, research, and field campaigns in Marambio Base, Antarctic Peninsula (AP), and surrounding areas, are frequently affected by low visibility and fog.  Additionally, upper-air soundings in the area are launched weekly, limiting the study of the synoptic time scale variability of these hazards. A special field campaign was designed to fill this observational gap, and to examine the drivers of fog events.  A three week-long intensive observation campaign during February 2023 successfully captured the evolution and vertical structure of two multiday fog episodes that were later interrupted by westerly Foehn winds, favoring sudden warming, drying, and clear skies over eastern flank of the AP.  This dataset is also used to evaluate and assess the skill of regional climate simulations using the Global Forecasting Systems data and the Polar-WRF model.  We carried out the later modeling activities to examine the mesoscale characteristics of the interplay between the fog episodes and the Foehn winds.  This study shows the analyses of the special upper-air observations and modeling simulations, with emphasis in the description of the observable and predictable mesoscale ingredients and their relationship with synoptic forcings. We found a cycle that modulates visibility and fog: (i) low visibility ahead of the synoptic trough bringing a deep northerly moistening and warming dominating warm advection fog on the northeastern side of the AP; (ii) an enhanced mid-level inversion is formed by adiabatic warming due to westerly winds on the lee side of the AP limiting mixing; (iii) visibility increases as Foehn winds warm up and dry out the low-level atmosphere west of the AP; (iii) a meso-low (heat-low) developed on the lee side of the AP that later moved eastward with the synoptic trough, bringing cooler southerly air masses that lower visibility and favoring cold advection fog; finally (iv) cooling is maintained ahead of the synoptic ridge sustaining cold advection fog.  Polar-WRF helped us diagnose the mechanistic nature of the fog events, while providing intricate multiscale connections modulating visibility in the region.

How to cite: Jimenez Garcia, M., Mejia, J., Henao, J. J., Troche, N., Martinez, A. R., and Chicaeme, K. A.: Visibility and Fog Synoptic and Mesoscale Variability over Marambio Base, Antarctic Peninsula, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14236, https://doi.org/10.5194/egusphere-egu24-14236, 2024.

X5.116
|
EGU24-18912
Priscilla Mooney, Alok Samantaray, Chiara De Falco, and Ruth Mottram and the PolarRES regional climate modellers

Within the Horizon 2020 project PolarRES, a new ensemble of regional climate simulations has been developed using the latest generation of regional climate models (RCMs) for the Arctic. These state-of-the-art RCMs downscale the ERA5 reanalysis over the period 2001-2020, covering the entire Arctic region at a grid spacings of approximately 12km. Furthermore, all simulations follow the Polar CORDEX protocol for the next generation of regional climate projections of the polar regions. This new ensemble of high-resolution climate simulations offers considerable opportunities to advance our understanding of the present-day climate of the Arctic. However, a first step to realising this potential is to evaluate the performance of the regional climate models, highlighting their strengths and limitations. This is also necessary for understanding and interpreting the future projections that will be generated by these RCMs using a novel storylines approach to downscale CMIP6 models.

The work presented here will focus on the simulations of the present-day climate driven by the ERA5 reanalysis. As part of the evaluation process, a clustering technique is applied to reanalysis data to identify regions with similar annual and seasonal characteristics of surface temperature and precipitation. This approach allows for a better understanding of the regional climates of the Arctic, provides a more physically consistent basis for model evaluation, and eases the investigation of model deficiencies in simulating regional scale forcings. This work will focus on the regionalisation of the Arctic for model evaluation and present preliminary results of the application of this regionalisation to the aforementioned Arctic climate simulations.

How to cite: Mooney, P., Samantaray, A., De Falco, C., and Mottram, R. and the PolarRES regional climate modellers: Evaluating a state of the art, internationally coordinated pan-Arctic regional climate model ensemble, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18912, https://doi.org/10.5194/egusphere-egu24-18912, 2024.

X5.117
|
EGU24-16074
|
ECS
Sebastian Scher, Florina Schalamon, Jakob Abermann, and Andreas Trügler

20th-century reanalysis datasets are an invaluable tool for understanding the climate from the beginning of the last century up to the present. They provide a best guess of the atmospheric state, based on a combination of observations and numerical modeling. Contrary to other reanalysis datasets, however, 20th-century reanalysis uses solely surface observations and is thus much less constrained. Consequently, the uncertainty of the analysis is high compared to reanalysis datasets for the satellite era. In the Arctic, where observations are even more sparse than in other parts of the globe, this issue is especially severe. Therefore, a robust estimation of the uncertainty of the reanalysis product is essential. While state of the art 20th-century reanalysis datasets provide some measures of uncertainty, they do not cover the whole uncertainty. We test whether historic independent measurements – that were not assimilated in the reanalysis – can be used to get a more reliable uncertainty estimation of temperature time-series over the last century. For this aim, we use recently digitized in-situ measurements from Alfred Wegener’s last Greenland expedition.  Finally, we assess how the outcome of testing typical hypotheses – such as warming trends or comparison of different periods - is affected when considering the new uncertainty estimations 

How to cite: Scher, S., Schalamon, F., Abermann, J., and Trügler, A.: Correcting uncertainty estimations of  20th-century reanalysis with independent historic datasets in the arctic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16074, https://doi.org/10.5194/egusphere-egu24-16074, 2024.

X5.118
|
EGU24-6416
|
ECS
|
Highlight
|
|
Nicole Loeb, Alex Crawford, and Julienne Stroeve

The warming Arctic climate drives an increased potential for extreme precipitation events. Here, extreme precipitation is defined as the top 5% of daily accumulations where at least 1 mm occurred. Case studies have shown that these events can have substantial impacts on the regional surface mass balance (SMB) of the Greenland Ice Sheet. Depending on the precipitation phase and timing, mass may be added via the precipitation, or melt may be enhanced from rainfall, driving increased runoff and ice discharge. Southern Greenland is an area undergoing substantial change in terms of both intense precipitation occurrence and SMB, so it is essential to understand their relationship as the climate warms.

Observations of extreme precipitation are limited due to its rare nature and sparse observational networks. Modelling studies can shed light on broader changes by filling in data gaps and providing future projections, allowing for a deeper look into physical linkages and changes. Here, historical and future simulations of the Regional Atmospheric Climate Model (RACMO) and Variable-Resolution Community Earth System Model (VR-CESM) are used. Representation of summer extreme precipitation events in southern Greenland in VR-CESM and RACMO is explored and compared through case studies. Key variables, including precipitation phase, runoff, and overall SMB are evaluated to discern potential impacts in each model. Events in the historical and future (following SSP5-8.5) periods are investigated to determine whether the response to events of similar magnitude and seasonal timing differs in a warmer climate.

Furthermore, an approximation of how these extreme precipitation events influence seasonal SMB is presented by assessing the ratio of the event-related anomaly to the cumulative seasonal SMB anomalies. Comparisons of event-specific contributions with broader seasonal variations shed light on the connection between short-term meteorological events and longer-term climatic shifts in shaping Greenland's SMB.

How to cite: Loeb, N., Crawford, A., and Stroeve, J.: Modelling the Impacts of Summer Extreme Precipitation Events on Surface Mass Balance in Southern Greenland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6416, https://doi.org/10.5194/egusphere-egu24-6416, 2024.

X5.119
|
EGU24-7689
|
ECS
Verena Mülder, Maurice van Tiggelen, and Carleen Tijm-Reijmer

This project contributes to the understanding of the surface mass and energy balance of the Greenland ice sheet, by evaluating the accuracy of the Copernicus Arctic Regional Reanalysis (CARRA) dataset against in-situ observations collected from automatic weather stations (AWS) positioned along the K-transect on the Greenland ice sheet.  Additionally, the results are compared with the Regional Atmospheric Climate Model 2.3p2 (RACMO2.3p2), containing a spatial resolution of 11 km against CARRA’s 2.5 km horizontal resolution. This research thereby emphasizes the improvements and shortcomings of the new CARRA dataset for reproducing the near surface climatology on the Greenland ice sheet.

The validated CARRA dataset is then used as forcing in a surface energy balance model, enabling the determination of the surface mass and energy balance components of the Greenland ice sheet at higher spatial resolution. The modelled surface mass balance is evaluated against in-situ measurements along the K-transect, and to other regions where in situ measurements are available. 

Preliminary results show that the CARRA dataset accurately reproduces radiative fluxes, such as short- and longwave radiation components, as well as turbulent fluxes, including temperature and wind gradients. These accurate representations provide updated, high-resolution gridded fields of the Greenland ice sheet’s climate, and are crucial for precise modelling of the melt and runoff dynamics of the Greenland ice sheet through the surface energy balance model.

This research thereby presents an updated high-resolution depiction of the Greenland ice sheet climate and energy balance, which can be used as a foundation for future projections of the Greenland Ice Sheet in forthcoming studies.

How to cite: Mülder, V., van Tiggelen, M., and Tijm-Reijmer, C.: Quantification of the Greenland ice sheet surface mass balance using high-resolution CARRA data and in-situ observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7689, https://doi.org/10.5194/egusphere-egu24-7689, 2024.

X5.120
|
EGU24-11814
|
Highlight
Monica Ionita-Scholz

The year 2023 marked a turning point for the Antarctic region, as the Southern Hemisphere experienced a significant reduction in its sea ice cover, with a record-breaking sea ice minimum in July 2023 of ~2.4 million square kilometers below the long-term mean. This study investigates the drivers behind this exceptional event, by combining observational, satellite and reanalysis data. Throughout the year, the Antarctic Sea ice extent broke record after record, ranking as the lowest sea ice on record from January to September, with the exception of March and April. The exceptionally low sea ice extent from May to August was mainly driven by the prevalence of a zonal wave number 3 pattern, with alternating surface high- and low-pressure systems, which favored the advection of heat and moisture, especially over the Ross Sea (RS), Weddell Sea (WS), and Indian Ocean (IO). From May 2023 to August 2023, record-breaking low sea ice extent and high temperatures were recorded, and the most affected regions were RS, WS, and IO. Over the Weddell Sea, temperature anomalies of up to 10°C have been observed from May to July, whereas over the Ross Sea, temperature anomalies of up to 10°C have been observed, especially in July and August. A regime shift in the Antarctic Sea ice, as well as in the average mean air temperature and subsurface ocean temperature over the Weddell Sea, was detected around 2015. The analysis revealed complex interactions between atmospheric circulation patterns, oceanic processes, and their implications for variability and change in Antarctic Sea ice. Understanding the underlying mechanisms of these extreme events provides crucial insights into the changing dynamics of Antarctic Sea ice and its broader climatic significance.

How to cite: Ionita-Scholz, M.: Large-scale drivers of the exceptionally low winter Antarctic Sea Ice Extent in 2023, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11814, https://doi.org/10.5194/egusphere-egu24-11814, 2024.

X5.121
|
EGU24-15041
|
ECS
|
Florina Roana Schalamon, Jakob Abermann, Sebastian Scher, Andreas Trügler, and Wolfgang Schöner

The air temperature (AT) increased during the Early 20th Century Warming (ETCW), especially in the Arctic, with a similar trend as during the present warming period. This AT increase is observed while investigating the annual AT anomaly of historic observations provided by the Danish Meteorological Institute (DMI) and of the zonal average of Greenland based on reanalysis data (NOAA 20CRv3). 

We define two distinct warming periods (1922–1932 and 1993–2007) for Greenland with a continuous increase in the AT anomaly. The increase is the largest at the northernmost observations in Upernavik and the smallest at the easternmost observations in Tasiilaq. The zonal average trend (Sen's slope) of AT increase in Greenland is 0.1°C/year in both periods, exceeding the global AT trend. Examining the spatial distribution of the AT trend in the reanalysis data during the warming periods reveals a warming hotspot in the sea in front of the West Coast of Greenland, which is more dominant in the second period. Nonetheless, the positive trend is rather homogeneous over Greenland, indicative of large-scale influences rather than localized phenomena. This motivates our study to analyse and compare the structure of atmospheric large-scale patterns (LSP) during these two warming periods. 

To do this, we use an unsupervised self-organizing maps (SOM) algorithm to highlight prevalent LSPs based on the reanalysis of the geopotential height of 500hPa. SOM is an artificial neural network used for clustering data into distinct groups, so-called nodes, by reducing its dimensionality. In the first approach to compare both periods, the frequency of the nodes is evaluated, meaning comparing how often a specific prevalent LSP defined by SOM occurs in the one and the other warming periods. A preliminary result is that there are significant differences in the occurrence of the nodes. Further exploration of the difference in node frequency and setting them into a meteorological context are the primary objectives of this study. 

Additionally, we aim to establish links between LSP and anomalies of atmospheric variables (such as air temperature) to investigate whether similar LSP are accountable for similar deviations. This will deepen our understanding of the atmospheric dynamics during Greenland's warming periods, which affect the cryosphere.  

How to cite: Schalamon, F. R., Abermann, J., Scher, S., Trügler, A., and Schöner, W.: Comparison of Atmospheric Large-scale Patterns during two Warming Periods in Greenland in the last 100 years , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15041, https://doi.org/10.5194/egusphere-egu24-15041, 2024.

X5.122
|
EGU24-18598
|
ECS
|
Cécile Davrinche, Cécile Agosta, Charles Amory, Christoph Kittel, and Anaïs Orsi

Antarctica's climate is unique, partly due to strong westerlies on the ocean and strong easterlies at the ice sheet margins. On the continent, near-surface winds play a major role in shaping the climate of the continent as they influence sea-ice formation, the amount of precipitation reaching the ground or the stability of the boundary layer. They result from both large-scale and surface forcings, whose relative magnitude and future evolution is yet uncertain.

We show an evaluation at present day of a selection of Earth System Models (ESMs) from CMIP6 and their downscalings by the regional atmospheric model MAR. The ESMs have been selected based on their demonstrated ability to represent fairly well the southern hemisphere general atmospheric circulation. They are thus expected to have a good representation of the large-scale forcing of near-surface wind. We present a framework for evaluating against field observations how accurately different CMIP6 products are able to represent near-surface winds over Antarctica. We also present the selection process for the automatic weather stations to use and the metrics for the evaluation.

Then, we investigate the future evolution of near-surface winds on the Antarctic continent as projected by the ESMs and their downscalings. We show maps of their projected changes up to 2100 and investigate whether these changes are significant with regards to the internal variability of the ESMs and their historical biases. This evaluation provides us with a first step towards characterizing the future evolution of near-surface winds in Antarctica. Further work will then be undertaken to provide a more comprehensive analysis of their potential drivers, including the evolution of both large-scale and surface forcings.

How to cite: Davrinche, C., Agosta, C., Amory, C., Kittel, C., and Orsi, A.: Projection of near-surface winds in Antarctica using ESMs downscaled by a regional atmospheric model (MAR), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18598, https://doi.org/10.5194/egusphere-egu24-18598, 2024.

Posters virtual: Thu, 18 Apr, 14:00–15:45 | vHall X5

Display time: Thu, 18 Apr 08:30–Thu, 18 Apr 18:00
Chairpersons: Diana Francis, Michiel van den Broeke, Michelle Maclennan
vX5.18
|
EGU24-11843
|
ECS
Surface conditions and mean monthly temperatures in the Arctic
(withdrawn)
Negar Ekrami and Haraldur Olafsson