EGU24-17134, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-17134
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Lightweight In-Situ Analysis of snow density and accumulation

Johanna von Drachenfels, Helle Astrid Kjær, and Josephine Lindsey-Clark
Johanna von Drachenfels et al.
  • University of Copenhagen, Niels Bohr Institute, Physics of Ice, Climate and Earth, Denmark (fzk160@alumni.ku.dk)

A critical factor in accurate Surface Mass Balance predictions of the Greenland Ice Sheet is the availability of spatially and temporally extensive snow accumulation data (Montgomery et al., 2018). Currently, this data remains deficient due to incomplete geographical coverage and poor temporal resolution (Sheperd et al., 2012).

An innovative approach to expanding the existing dataset is the utilization of the LISA box: a portable Lightweight In-Situ Analysis system designed for fast and straightforward snow and ice core measurements (Kjær et al., 2021), which speeds up the delivery of the results. With the LISA box, the sample cores are melted, and continuous flow analysis of chemical impurities and conductivity in the meltwater reveals annual peaks and climatic horizons. This information allows for dating of the single ice and snow layers. The registration of the melt speed furthermore permits the determination of the layer thickness, while the layer density can be inferred with an additional measurement of the meltwater flowrate. By combining these insights, past accumulation rates, as indicated by the volume of annually deposited snow, can be reconstructed.

Here we present updates to the existing LISA box enhancing its abilities to further analyse for density variations in snow and firn cores.

How to cite: von Drachenfels, J., Kjær, H. A., and Lindsey-Clark, J.: Lightweight In-Situ Analysis of snow density and accumulation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17134, https://doi.org/10.5194/egusphere-egu24-17134, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 16 Apr 2024, no comments

Post a comment