Changing risk from extratropical windstorms in Europe
- University of Exeter, Department of Mathematics and Statistics, Exeter, United Kingdom of Great Britain – England, Scotland, Wales (j.catto@exeter.ac.uk)
Future projections of European windstorms and the resultant socioeconomic losses are subject to large uncertainties associated with model differences, internal variability, and emissions scenarios. Here we have used a dataset of objectively identified extratropical cyclones from reanalysis and a multi-model ensemble of climate models under different future warming scenarios. We have applied two storm severity indices; one that is only a measure of the severity of the windstorms; and one that takes into account the population (and its projected future changes) to better understand projections of losses from windstorms. Over northern and central Europe the storm severity itself more than doubles, but the losses estimated from the population-weighted index more than triple due to projected population increases. We also consider an idealised adaptation scenario, where future damage thresholds are used that take into account the increasing future wind speeds. This indicates that adaptation can only partially offset the increased losses. Considering different emissions scenarios, future increase in risk is reduced when following a lower emissions scenario. We show that to understand the future changing risk associated with European windstorms, there is a need to go beyond physical hazard modelling to consider risk and adaptation from a socio-economic perspective.
How to cite: Catto, J., Priestley, M., and Little, A.: Changing risk from extratropical windstorms in Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17837, https://doi.org/10.5194/egusphere-egu24-17837, 2024.