EGU24-17892, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-17892
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Testing the deep water source variations in the Atlantic Iberian margin over the last deglaciation

Susana M. Lebreiro, Laura Antón, Silvia Nave, Claire Waelbroeck, Edouard Bard, Luke Skinner, Isabel Reguera, Elisabeth Michel, Natalia Bravo, Jordi F. Lopez, Belen Martrat, Teresa Rodrigues, Eva Bellido, and Francisco Sierro
Susana M. Lebreiro et al.

The reservoir age of waters and carbon sequestration increased in the deep Atlantic Ocean during the last glacial period. The glacial northern deep water (GNADW) formation reached shallower depths than during the ensuing interglacial, and the underlying southern-sourced bottom water (GAABW) was filling the basin, generally poorly ventilated. The mechanisms within the deep ocean that facilitate the flip from glacial-to-interglacial modes are as yet to be understood.  

Here we present analysis performed on foraminifera (benthic δ13C, abundance of oxygen-tolerant benthic species and 14C age difference between benthic and planktonic species), together with the n-hexacosan-1-ol index (biomarker of the oxygenation of the deep-sea floor) in three deep cores at the Atlantic Iberian margin (ca. -5,000 m depth; 40°N). The locations selected follow the pathway of the Northeast Atlantic Deep Water (NEADW): MD03-2698 (Tagus Iberian margin), D219 (Rincão da Pomba) and MD13-3473 (Tore inner basin). Additionally, results of polar northern and southern sites (U1308 and TN057-21 respectively) are discussed as a reference for evaluating long-distance connections. 

The hypothesis to be tested is whether the deep waters off Iberia were northern- or southern-sourced during the deglaciation within the Tore seamount, a crater-shaped geological structure, 300 km off the Iberian continental shelf. It includes an inner basin down to -5,500 m, isolated from the oceanic basin by a summit rim at -2,200 m. The external connection with the Atlantic is by two narrow NW and NE gateways down to –4,300 m. This makes the area a singular spot to decipher the NEADW-end member of the Atlantic deep circulation. 

We find benthic (Cibicidoides wuellerstorfi) δ13C values around 0 ‰ in the interior of the Tore before 18 ky, slightly heavier than those known from shallower Iberian sites (ca. -3,500 m). This points to isolation of the Tore basin from the influence of GAABW. This contrasts with the other sites MD03-2698 and D219 which record δ13C around -0.6 ‰, similarly to TN057-21 values. Inside the Tore, benthic foraminifera species grouped according to their oxygen tolerance are oligotrophic during the glacial (oxygen-rich, more ventilated conditions) and mesotrophic over the Holocene (intermediate ventilation).

The carbon residence time measured in MD03-2698 and D219, as estimated from the 14C age difference between benthic and planktonic foraminifera, confirms previous reservoir ages in the deep Iberian margin (MD99-2334K; JC89-SHAK03-6K, JC89-SHAK05-3K). In the inner basin (MD13-3473), the estimation is not valid, probably due to increased bioturbation, lower sedimentation rates and mixing turbiditic flow. 

The hexacosanol index marks the lowest ventilation pattern culminating around 16 ky (MD03-2698, D219), an apparent inflection point from when the ventilation shifts from southern to northern sourced deep waters, the former not registered in the inner Tore (MD13-3473). This occurs in line with a large reduction in the Atlantic meridional overturning circulation (AMOC) and maximum extent of ice sheets. Taken together, interactions between atmospheric, marine, cryosphere and terrestrial climate elements, as recorded by different proxies during the stadial multi-step structure associated within Heinrich event 1 (H1.1) are giving clues to the processes bringing about deglaciation.

How to cite: Lebreiro, S. M., Antón, L., Nave, S., Waelbroeck, C., Bard, E., Skinner, L., Reguera, I., Michel, E., Bravo, N., Lopez, J. F., Martrat, B., Rodrigues, T., Bellido, E., and Sierro, F.: Testing the deep water source variations in the Atlantic Iberian margin over the last deglaciation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17892, https://doi.org/10.5194/egusphere-egu24-17892, 2024.