EGU24-18099, updated on 11 Mar 2024
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Application of Life Cycle Assessment in Vegetarian Lunch Box: Environmental Impact Hotspot Analysis of Whole Grain and Vegetable Production

Chih-Kang Chen and Ching-Pin Tung
Chih-Kang Chen and Ching-Pin Tung
  • National Taiwan University, College of Bioresources and Agriculture, Department of Bioenvironmental Systems Engineering, Taiwan (

Life Cycle Assessment (LCA) is a systematic approach used to evaluate the environmental impacts of products, services, or activities throughout their life cycle, from raw material acquisition and production to use and final disposal or recycling stages. The goal of LCA is to comprehensively assess environmental impacts across the entire life cycle, including energy consumption, greenhouse gas emissions, water and land use, and more. The execution of LCA primarily involves four stages: "goal and scope definition," "life cycle inventory," "life cycle impact assessment," and "life cycle interpretation." This method helps identify and improve environmental hotspots in products or activities, aiming to reduce adverse impacts on the environment.

This study references the "Packaging Lunch Box Product Category Rules" published by the Environmental Protection Administration of the Executive Yuan in Taiwan. Using a vegetarian lunch box manufacturer in Taiwan as a data source, a "Vegetarian Lunch Box Carbon Footprint Calculation Tool" was developed using SimaPro. Users can input first-tier data for each stage of the product life cycle (such as raw material input, energy, transportation distance, and output products), enabling the calculation of the carbon footprint of the vegetarian lunch box.

However, during the "life cycle interpretation" stage, this study found that the "raw material acquisition stage" contributes 80% of the carbon footprint throughout the entire life cycle of the vegetarian lunch box. This indicates significant negative environmental impacts during the "agricultural production" process. As a result, the study traces the environmental impacts of upstream agricultural production processes for grains and vegetables and proposes an improvement strategy: regenerative agriculture.

Regenerative agriculture practices include protective tillage to reduce physical soil disturbance, increasing biodiversity in fields, cover cropping to enhance soil carbon and prevent erosion, crop rotation for balanced soil nutrient use, and refraining from using chemical fertilizers and pesticides. The goal of regenerative agriculture is to sequester carbon in the soil and above-ground biomass, reducing greenhouse gas emissions, increasing crop yields, enhancing resilience to unstable climates, and improving the health and vitality of rural communities.

This study will also employ the life cycle assessment method to collect inputs and outputs for both conventional farming practices and regenerative agriculture, comparing their environmental impacts.

How to cite: Chen, C.-K. and Tung, C.-P.: Application of Life Cycle Assessment in Vegetarian Lunch Box: Environmental Impact Hotspot Analysis of Whole Grain and Vegetable Production, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18099,, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 09 Apr 2024, no comments