ERE1.5 | Sustainable Food Systems Transformation in the face of Environmental Change and Water Shortage
EDI
Sustainable Food Systems Transformation in the face of Environmental Change and Water Shortage
Co-organized by BG8/HS13
Convener: Marta TuninettiECSECS | Co-conveners: Alvar Escriva-Bou, Irene Blanco-Gutiérrez, Carole Dalin, Matti Kummu
Orals
| Thu, 18 Apr, 14:00–18:00 (CEST)
 
Room 0.96/97
Posters on site
| Attendance Fri, 19 Apr, 16:15–18:00 (CEST) | Display Fri, 19 Apr, 14:00–18:00
 
Hall X4
Posters virtual
| Attendance Fri, 19 Apr, 14:00–15:45 (CEST) | Display Fri, 19 Apr, 08:30–18:00
 
vHall X4
Orals |
Thu, 14:00
Fri, 16:15
Fri, 14:00
Humanity faces the grand challenge of providing an affordable, safe, stable, and nutritious food supply to a growing and more affluent population in a sustainable and resilient manner. In addition, water scarcity is expected to intensify in the coming years threatening the sustainability of food production and water-related systems. Agri-food system actors - including policymakers, corporations, farmers, traders, and consumers - must meet these challenges while considering potentially conflicting priorities, such as environmental sustainability and water shortage, economic viability, nutritional balance and quality, social equity, and adaptation to environmental extremes and other shocks. Especially, the degradation of conventional water resources (surface water and groundwater) are making the water sector look for alternative sources of water supply. Non-conventional techniques are increasingly being used as an integral part of a long-term water resources strategy.
In this session, we welcome submissions that analyse i) food system solutions and their trade-offs or synergies between or within environmental, economic, and health; ii) the role and use of non-conventional water including technological innovations, public perception, and policy and institutional mechanisms; iii) implications of transformations for food system components in the face of the challenge risen by environmental and/or climate change. The session will include studies providing quantitative methods for assessing multiple environmental, economic or social dimensions, and qualitative methods including in-depth interviews, focus groups, case studies.

Orals: Thu, 18 Apr | Room 0.96/97

Chairpersons: Irene Blanco-Gutiérrez, Alvar Escriva-Bou
14:00–14:05
Sustainable water management
14:05–14:15
|
EGU24-21484
|
On-site presentation
Jose Luis Molina, Victor Monsalvo, Angel Encinas, and Engracia Lacasa

The rural areas of the SUDOE present many common challenges related to the integrated water cycle: the scarcity of water resources (aggravated by climate change), the impact of agricultural and livestock activities on water quality (and the consequent difficulty of reconciling compliance with the European directive, the continuity of economic activity and the availability of water) and the lack of efficiency and profitability in management (with obsolete facilities and few human resources).
It is essential to strengthen collaboration networks between the many stakeholders involved in water resources management in order to implement efficient, sustainable and cost-effective techniques for water purification, reuse and treatment. To this end, it is necessary to create a new governance system based on territorial cooperation. Water is a common good and, as such, it does not understand borders.
The project will develop a strategy to improve water efficiency and quality in rural SUDOE areas in a context of climate change, 5 action plans for 4 organizations to improve water supply and treatment services, 3 pilot tests of cost-effective and sustainable solutions for water purification, purification and reuse, and a digital tool for 2 organizations to improve water management. In addition, it will improve the capacities of public authorities in 3 countries and the knowledge of water purification, treatment and reuse techniques like water treatment, reuse and purification techniques of 3 scientific institutions.
GestEAUr will adopt an innovative approach, addressing the integrated water cycle holistically (taking into account all its stages) and will go beyond existing practice, which tends to apply the same solutions whatever the characteristics of the territory where they are implemented.
Consequently, it will analyze and test cost-effective, cutting-edge and nature-based techniques (and combinations of techniques) (SBN) specific to the needs of rural areas in the SUDOE. It will also provide digital tools to optimize and facilitate their management and planning.

How to cite: Molina, J. L., Monsalvo, V., Encinas, A., and Lacasa, E.: Sustainable and digitalized water management in rural environments in the SUDOE area (GestEAUr project), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21484, https://doi.org/10.5194/egusphere-egu24-21484, 2024.

14:15–14:25
|
EGU24-7458
|
ECS
|
Highlight
|
On-site presentation
Athanasios Zisos, Klio Monokrousou, Konstantinos Tsimnadis, Ioannis Dafnos, Katerina Dimitrou, Andreas Efstratiadis, and Christos Makropoulos

As urban populations swell and infrastructure demands escalate, managing resources sustainably becomes increasingly challenging. This paper focuses on the energy challenges inherent in distributed water management systems, using sewer mining as an example. Sewer mining is a distributed water management solution involving mobile wastewater treatment units that extract and treat wastewater locally. In this context, we examine the integration of renewable energy sources, specifically solar photovoltaics, to reduce reliance on traditional power grids, highlighting a pilot implementation at the Athens Plant Nursery in Greece since 2021. The study evaluates various system configurations, balancing performance with landscape integration, to propose a scalable and robust model for distributed water management. This approach not only addresses the direct energy requirements of water treatment systems but also contributes to the broader agenda of circular economy, by enhancing the sustainability and resilience of urban water infrastructure.

This work is supported by IMPETUS research project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101037084

How to cite: Zisos, A., Monokrousou, K., Tsimnadis, K., Dafnos, I., Dimitrou, K., Efstratiadis, A., and Makropoulos, C.: Leveraging renewable energy solutions for distributed urban water management: The case of sewer mining, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7458, https://doi.org/10.5194/egusphere-egu24-7458, 2024.

14:25–14:35
|
EGU24-3941
|
ECS
|
Highlight
|
On-site presentation
Mario Ballesteros-Olza, Sarah Stempfle, Irene Blanco-Gutiérrez, Almudena Gómez-Ramos, Giacomo Giannoccaro, and Bernardo De Gennaro

In a context of growing global water demands, plus climate change affecting water resources availability, non-conventional water sources (like reclaimed water and desalinated seawater) are emerging as promising water supply alternatives. Given that agriculture is the major contributor to water withdrawals, this study analyzes if the use of non-conventional water for irrigation leads to a better performance of irrigation communities (ICs). To do so, the research includes several ICs from the Segura River Basin (southeast of Spain), a region with structural water deficit, which is pioneer regarding the use of non-conventional water; as well as ICs from the Apulia region (southeast of Italy), which also suffers from water scarcity problems, but is less experienced regarding the use of non-conventional water. A benchmarking analysis was carried out, based on a set of Key Performance Indicators (KPIs), such as irrigation efficiency, guarantee of water supply, energy costs or gross margin, among others. This methodology has been previously used in the framework of the water and drainage sector. Also, a Principal Component Analysis and Clustering Analysis were applied to explore potential dissimilarities between the studied ICs and their causes. Finally, a regression analysis was carried out to observe if the use of non-conventional water has any effects on the performance of the studied ICs. The results of this research may help to increase knowledge regarding the pros and cons of using these non-conventional water resources, depending on the socioeconomic, environmental and geographical context. This way, this study would contribute to promoting the use of non-conventional water in other regions, leaning towards a more sustainable use of water resources and, consequently, protecting and preserving water ecosystems.

How to cite: Ballesteros-Olza, M., Stempfle, S., Blanco-Gutiérrez, I., Gómez-Ramos, A., Giannoccaro, G., and De Gennaro, B.: Do non-conventional water resources lead to a better performance of irrigation communities? A comparative analysis between the regions of Murcia (Spain) and Apulia (Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3941, https://doi.org/10.5194/egusphere-egu24-3941, 2024.

14:35–14:45
|
EGU24-1342
|
ECS
|
Highlight
|
On-site presentation
Oleksandr Mialyk, Markus Berger, and Martijn J. Booij

Flex crops—crops with multiple end-uses that can be flexibly interchanged—play an important role in our society. Due to high nutritional and energy contents, they became widely used in various industries, providing food, animal feed, biofuels, and other chemical components. However, a limited number of studies exists on the environmental pressures of such crops, specifically concerning water resources.

Here, we aim to quantify the water footprints of main flex crops—namely maize, oil palm, soya beans, sugar cane, coconut, cassava, rape seed, and sunflower—using a recently published database on gridded water footprints of the world’s major crops in the 1990–2019 period. Our study reveals three key developments:

  • All flex crops experienced large water-productivity gains in response to increasing crop yields (less water is needed per tonne).
  • The global water footprint of flex crops has increased by more than one trillion cubic metres as productivity gains were insufficient to meet rapidly growing demand.
  • The production of flex crops has been concentrating around main exporting regions, most notably in Latin America and South-eastern Asia.

As demand keeps increasing, this raises a need for further research addressing the sustainability of flex crops. In particular, regarding the potential links to green and blue water scarcity, exposure of global supply chains to socio-economic and climatic risks, and the role of flex crops in our society.

How to cite: Mialyk, O., Berger, M., and J. Booij, M.: Increasing water footprints of flex crops, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1342, https://doi.org/10.5194/egusphere-egu24-1342, 2024.

14:45–14:55
|
EGU24-11369
|
ECS
|
On-site presentation
Jessica Eisma, Luigi Piemontese, Giulio Castelli, Ruth Quinn, Bongani Mpofu, Doug Graber Neufeld, Cate Ryan, Hannah Ritchie, Lorenzo Villani, and Elena Bresci

Sand dams are water harvesting structures built across ephemeral sandy rivers to increase water supply in drylands. Despite their effectiveness in reducing water scarcity for local communities and their recent traction in research and development, information on their distribution and characteristics are sporadic and largely unreported. This gap represents a major barrier for understanding the large-scale potential of such a Nature-based Solution for drylands and planning for new infrastructure. This paper presents a global database of sand dam locations and dimensions developed within a collaboration between research and development experts on the topic. We collected sand dam information on location from several sources, ranging from research reports to databases provided by practitioners. We then reviewed and enriched them based on visual inspection from Google Earth images. The georeferenced information provided by the database can support research development on the effectiveness of sand dams and support practitioners with science-based criteria for sand dam development across global drylands.

How to cite: Eisma, J., Piemontese, L., Castelli, G., Quinn, R., Mpofu, B., Graber Neufeld, D., Ryan, C., Ritchie, H., Villani, L., and Bresci, E.: Expert-based global database of sand dams dimensions and distribution across drylands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11369, https://doi.org/10.5194/egusphere-egu24-11369, 2024.

14:55–15:05
|
EGU24-15345
|
ECS
|
On-site presentation
Sai Kiran Pilla, Mahak Jain, Partha Sarathi Ghosal, and Ashok Kumar Gupta

The Green Revolution in India, from 1967-68 to 1977-78, led to a significant shift in the country's agricultural landscape, transforming it from an insufficient food production country to a global agricultural power. This led to an increase in the use of pesticides, such as atrazine, which can pollute water sources and endanger aquatic habitats. This research aims to find sustainable and practical techniques for atrazine remediation within aquatic habitats. Literature suggests that macrophyte richness enhances the functionality of constructed wetlands (CWs), but the predominant practice is monocultures. The functional diversity within macrophyte communities is crucial for optimal performance of CWs for contaminant remediation. CWs with diverse growth forms exhibit enhanced plant growth and superior nutrient removal capabilities. The study evaluates atrazine removal efficacy of polyculture and monoculture plantation, monitoring the efficiency of various individual macrophyte, such as Canna indica and Phragmites Australis for atrazine detoxification. The findings could guide the formulation of sustainable and efficacious atrazine remediation strategies, safeguarding water quality and the integrity of aquatic ecosystems.

How to cite: Pilla, S. K., Jain, M., Ghosal, P. S., and Gupta, A. K.: Atrazine Removal in Constructed Wetlands: Efficacy of Monocultures versus Polycultures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15345, https://doi.org/10.5194/egusphere-egu24-15345, 2024.

15:05–15:15
|
EGU24-18001
|
ECS
|
Virtual presentation
Rupal Sinha and Partha Sarathi Ghosal

Disinfection is a critical drinking water treatment procedure to guarantee water safety in urban water supply systems. However, an inevitable consequence is the generation of secondary pollutants, referred to as disinfection byproducts (DBPs). Toxicological researches have linked the ingestion of DBPs to harmful human health consequences like a higher risk of bladder cancer, reproductive problems, etc. Subsequently, the water authorities face immense challenges due to their existence in the drinking water. The foremost approach to limiting their generation in the drinking water is to eliminate their precursors prior-to disinfection. Humic acid (HA), a significant constituent of the natural organic matter in surface water, has been acknowledged as the primary precursor of DBPs. Thus, the present work aims to reduce humic acid content in water by magnesium oxide (MgO) adsorbent. To ascertain the mechanism of humic acid removal, characterizations of the adsorbents were conducted both before and after. At neutral pH level, the impacts of various process parameters are examined, including contact time, adsorbent dosage, initial humic acid concentration, and temperature. Moreover, studies were performed to assess the effects of different solution pH on the elimination of humic acid. The removal of humic acid was found to be increased at low pH. At pH 3, over 85% elimination was obtained. Furthermore, the role of several anions, including nitrate, sulfate, and chloride, in the adsorption of humic acid has also been evaluated. Overall, the present study would be conducive to proving the applicability of MgO for the reduction of HA and other organic matter from water and, hence, reduce the generation of DBPs.

How to cite: Sinha, R. and Ghosal, P. S.: Adsorptive removal of humic acid from water by magnesium oxide, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18001, https://doi.org/10.5194/egusphere-egu24-18001, 2024.

15:15–15:25
|
EGU24-7380
|
ECS
|
Virtual presentation
|
Nasim Chavoshi, Serdar Dogruel, Nilay Bilgin-Saritas, Zeynep Karaoglu, Irem Ozturk-Ufuk, Ramazan Keyikoglu, Alireza Khataee, Emel Topuz, and Elif Pehlivanoglu-Mantas

The surge in pharmaceutical use during global pandemics, like SARS-CoV-2, has led to increased antiviral concentrations in wastewater treatment plant influents. The low biodegradability of certain antivirals poses a challenge for wastewater treatment, threatening aquatic and soil ecosystems. This study aimed to optimize ozonation and catalytic ozonation processes for removing two anti-COVID-19 drugs (namely, favipiravir and oseltamivir) and assess their ecotoxicological effects in the context of potential wastewater reuse.

In this study, samples with 50 µg/L of favipiravir and oseltamivir were added to synthetic wastewater with approximately 50 mg COD/L, mirroring a typical domestic effluent. Experiments involved three ozone doses (0.2, 0.6, and 1 mg O3/mg DOC) at pH levels of 7 and 10. Adding 0.1 g/L of ZnFe layered double hydroxide as a catalyst aimed to improve the ozonation efficiency. Samples with 0.1 mg/L polyethylene microplastics were prepared to explore the efficiency of the applied processes in the presence of microplastics. The target drugs were quantified by LC-MS/MS. E. crypticus was used to understand the ecotoxicological impact of the treatment techniques on the potential reuse of treated wastewater for irrigation.

Regardless of the ozone dose used, ozonation at pH=7 resulted in removal efficiencies of 84% and 64% for favipiravir and oseltamivir, respectively. Increasing the pH value to 10 did not improve favipiravir elimination, yet an additional removal of 21% was recorded for oseltamivir at all three ozone doses. During catalytic ozonation, an approximately 30% decline in the abatement of drugs was observed when compared with ozonation alone, which could be attributed to either adsorption of ozone on the catalyst’s active-sites (blockage of active-sites and reduction in the availability of ozone radicals) or production of refractory by-products (enhancement in the competition between radicals and active-sites). In the presence of microplastics, ozonation experiments at pH=7 provided an average decrease of about 30% in the removal efficiency for both drugs whereas ozonation at pH of 10 resulted in an approximately 15% fall in the elimination level. Catalytic ozonation in the absence of microplastics, however, showed positive effects on the reduction rates of the examined drugs since the applied process yielded an improvement in the abatement of 14 and 7% for favipiravir and oseltamivir, respectively. Both in the presence and absence of microplastics, ozonation and catalytic ozonation of antivirals at pH=7 did not lead to any toxic effects for the reproduction of E. crypticus; instead, an increase in the reproduction performance was found, possibly due to the formation of more biodegradable organic intermediates. The experimental data obtained revealed that ozonation or catalytic ozonation could be viable alternatives for upgrading the existing wastewater treatment plants as they functioned well as a complementary treatment process not only to reduce the release of antivirals from domestic effluents, but also to substantially increase the reuse potential of treated wastewater for irrigation purposes.

This study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project #121Y383) and Scientific Research Projects Coordination Unit of Istanbul Technical University (ITU-BAP, Project # MYL-2023-44496).

How to cite: Chavoshi, N., Dogruel, S., Bilgin-Saritas, N., Karaoglu, Z., Ozturk-Ufuk, I., Keyikoglu, R., Khataee, A., Topuz, E., and Pehlivanoglu-Mantas, E.: Removal of favipiravir and oseltamivir in domestic wastewater effluents using ozonation and catalytic ozonation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7380, https://doi.org/10.5194/egusphere-egu24-7380, 2024.

15:25–15:35
|
EGU24-13972
|
ECS
|
On-site presentation
Sudatta Ray

Pumping energy is a key component of the groundwater governance challenge. Yet it is largely missing in the discourse on agricultural use of groundwater. A sub-category of literature studying groundwater-energy nexus tends to focus on groundwater depletion hotspots where entrenched interests and long-standing history restrict the range of feasible energy models. We simulate expected impacts of expanding groundwater irrigation under five different energy provision models in a region with among the lowest irrigation coverage, and therefore, free of path dependent policies. We find aquifer properties play a crucial role in mediating the groundwater-energy nexus. On average, the maximum volume of water that can be pumped from a well of a specific depth in an alluvial aquifer is approximately 150 times the volume that can be pumped from a well in a hard-rock aquifer. Therefore, managing uncertainty in groundwater consumption is a far greater challenge in alluvial than hard-rock aquifers. Uncertainty in groundwater consumption can be limited in hard-rock aquifers if the number of wells and depths of wells can be controlled - capital subsidies for well construction could be a potential policy. Our results imply that while solar pumps are a risky alternative in alluvial aquifers for maintaining current and future groundwater levels, they are relatively safe and among the most economical for expanding irrigation in hard-rock regions. Using a novel dataset comprising of biophysical and socioeconomic data, we find hard-rock regions to have limited irrigation coverage, high availability of annually replenishable groundwater, and high concentrations of marginalized farmers. Therefore, groundwater irrigation expansion in hard-rock areas could have dual benefits of ensuring future food security and targeting poverty reduction.

How to cite: Ray, S.: Balancing groundwater access and sustainability through energy pricing in India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13972, https://doi.org/10.5194/egusphere-egu24-13972, 2024.

15:35–15:40
Sustainable food solutions (water, climate, biodiversity, health)
15:40–15:45
Coffee break
Chairpersons: Marta Tuninetti, Carole Dalin, Matti Kummu
16:15–16:25
|
EGU24-7331
|
ECS
|
On-site presentation
Shekhar Goyal, Raviraj Dave, Udit Bhatia, and Rohini Kumar

Humanity’s contemporary challenge in achieving global food security is sustainably feeding the rising global population. Intensive agricultural practices have powered green revolutions, helping nations attain self-sufficiency. However, these fertilizer-intensive methods and exploitative trade systems have created unsustainable agrarian systems. To probe the environmental consequences on production hubs, we map the fate of Nitrogen and Phosphorus in India’s interstate staple crop trade over the recent decade. Here, we analysed the spatiotemporal evolution of physical and virtual nutrient flow within India's interstate agricultural trade network, examining the environmental load on key production regions, assessing the sustainability of domestic wheat and rice trade systems in light of nutrient surplus, and providing policy recommendations for environmentally sustainable food security. Our examination of the cereal crop trade reveals that the Nation's food bowls contributing significantly towards domestic food security are sacrificing their environmental goals by becoming pollution-rich and water-poor. Our study emphasises policies focusing on redistributing funds from agricultural subsidies that aggravate environmental disparity to those incentivising sustainable production. The findings could offer a foundation for designing and exploring alternate trade network configurations that aim for environmental sustainability without compromising food security goals.

 

How to cite: Goyal, S., Dave, R., Bhatia, U., and Kumar, R.: Agricultural pollution in Indian Interstate Trade Network, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7331, https://doi.org/10.5194/egusphere-egu24-7331, 2024.

16:25–16:35
|
EGU24-7880
|
ECS
|
On-site presentation
Ruparati Chakraborti, Kyle Frankel Davis, Ruth DeFries, Narasimha D. Rao, Jisha Joseph, and Subimal Ghosh

Water and food security in the Indo-Gangetic Plain (IGP) is severely affected due to the intensive irrigated agriculture, growing population, and changing climate. Agricultural intensification with the water-intensive rice-wheat system has increased the water demand in India. The declining monsoon rainfall and increased irrigation with more reliance on groundwater sources have resulted in groundwater depletion over India’s fertile region, the Indo-Gangetic Plain (IGP), with high energy usage. Despite several agricultural technology developments, no improvement is found in calorie production from cereal crops per unit of water consumption in the IGP. Crop switching from water-intensive rice and wheat to climate-resilient nutri-cereals can be a potential solution for water sustainability, but other dimensions i.e. food supply, and farmers’ profit need to be considered for implementation. So, a multi-objective optimization framework is needed to address the social, economic, and environmental sustainability objectives which are conflicting in nature, to find the optimal cropping pattern. In this study, an optimization model is developed and applied for crop switching with objectives to maximize calorie production, and farmers’ profit and to minimize water consumption by reallocating the cropped areas between cereals at the district level. Application of the model suggests switching from rice to millet and sorghum in the Kharif Season (monsoon), and wheat to sorghum and barley in the Rabi season (winter), which could potentially decrease water consumption by 32%, increase calorie production by 39%, and elevate farmers' profits by 140%. Water and energy savings (with the replaced cropping pattern are higher than changing irrigation practices (i.e. from flood to drip). So, crop switching coupled with efficient irrigation practices (drip) contributes to saving more energy and water. These findings suggest the potential of crop switching to address the multidimensional sustainability challenges in agricultural practices in the IGP, with a scope of application to other regions grappling with similar issues. The implementation of crop switching is driven by multiple factors such as the willingness of farmers, incentives, and other strategies for farmers to shift crop practice, procurement of nutri cereals through Minimum Support Price, subsidized supply through the Public Distribution System, and consumer demand; thus, leaving an opportunity to explore these aspects in future studies for policy framing towards sustainable agricultural practices.

How to cite: Chakraborti, R., Davis, K. F., DeFries, R., D. Rao, N., Joseph, J., and Ghosh, S.: Crop switching in the Indo-Gangetic Plain of India can improve water and food sustainability with increased farmers’ profit, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7880, https://doi.org/10.5194/egusphere-egu24-7880, 2024.

16:35–16:45
|
EGU24-4850
|
ECS
|
On-site presentation
Global coupling coordination and interactions between diet, environment, and human health
(withdrawn)
Meng Li, La Zhuo, and Pute Wu
16:45–16:55
|
EGU24-15307
|
ECS
|
On-site presentation
Marijn Gülpen, Christian Siderius, Ype van der Velde, Jon Cranko Page, Jan Biermann, Ronald Hutjes, Lisanne Nauta, Samuel Sutanto, and Hester Biemans

Food insecurity results from a complex interplay of climate, socio-economic and political drivers, with local food security being frequently influenced by events elsewhere. Recent unprecedented climate events and economic disruptions such as Covid-19 and the resurgence of large intra- and inter-state conflict, show the diverse and unpredictable nature of risk, which can suddenly impacting food production and supply chains.

Here, we present a coupled hydrology-crop production-trade model that is able to simulate, in real time, current and near-future risks to water and food security. The model combines an operational process-based simulation of global crop production and hydrology with an ML-powered trade module, trained on FAOs detailed trade matrix dataset. It is updated monthly with the latest ERA5 climate data from the Copernicus Data Store to assess current risk, and can be forced with seasonal forecasting and long term climate projections up to 2100. The model explains about 50% of yield variability in major growing regions - a critical characteristic for nowcasts or seasonal forecasts – and the majority of food trade and trends therein, but generally still underestimates the variability. As a first step to better reproduce observed crop yield anomalies we improved the simulation of growing seasons in the production model.  

By combining production with trade, we are able to estimate the impact of climate-related yield anomalies elsewhere, and to assess risks for water- and food security at the country, regional or global scale. Derived indicators provide a real-time insight into, for example, food production and storage per capita, crop water productivity, or crop or export specific water stress. Through continued evaluation and learning, we expect to be able to better identify emerging stresses in the food system and its drivers, and support early anticipation of potential future food security risks. This should ultimately lead to a better understanding of the complexity of the global food system and eventually result in a more sustainable food system.

How to cite: Gülpen, M., Siderius, C., van der Velde, Y., Cranko Page, J., Biermann, J., Hutjes, R., Nauta, L., Sutanto, S., and Biemans, H.: Tracking real-time impacts of climate variability and trade disruptions on water and food security , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15307, https://doi.org/10.5194/egusphere-egu24-15307, 2024.

16:55–17:05
|
EGU24-14983
|
ECS
|
Highlight
|
On-site presentation
Yanxian Li, Pan He, Yuli Shan, Yu Li, Ye Hang, Shuai Shao, Franco Ruzzenenti, and Klaus Hubacek

How much and what we eat and where it is produced can create huge differences in greenhouse gas emissions. Bridging food consumption with detailed household-expenditure data, this study estimates dietary emissions from 13 food categories consumed by 201 expenditure groups in 139 countries, and further models the emission mitigation potential of worldwide adoption of the EAT–Lancet planetary health diet. We find that the consumption of groups with higher expenditures generally creates larger dietary emissions due to excessive red meat and dairy intake. As countries develop, the disparities in both emission volumes and patterns among expenditure groups tend to decrease. Global dietary emissions would fall by 17% if all countries adopted the planetary health diet, primarily attributed to decreased red meat and grains, despite a substantial increase in emissions related to increased consumption of legumes and nuts. The wealthiest populations in developed and rapidly developing countries have greater potential to reduce emissions through diet shifts, while the bottom and lower-middle populations from developing countries would cause a considerable emission increase to reach the planetary health diet. Our findings highlight the opportunities and challenges to combat climate change and reduce food inequality through shifting to healthier diets.

How to cite: Li, Y., He, P., Shan, Y., Li, Y., Hang, Y., Shao, S., Ruzzenenti, F., and Hubacek, K.: Reducing climate change impacts and inequality of the global food system through diet shifts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14983, https://doi.org/10.5194/egusphere-egu24-14983, 2024.

17:05–17:15
|
EGU24-5637
|
ECS
|
On-site presentation
Hao Zhao, Haotian Zhang, Petr Havlik, and Jinfeng Chang

China's increasing food consumption, particularly for animal products, presents a substantial challenge to mitigating greenhouse gas (GHG) emissions, not only within China but also extending to its trading partners. In this study, we employ the well-established food system integrated assessment model (GLOBIOM-China) to comprehensively investigate GHG emissions within the context of China's future food consumption. Our study indicates that in the baseline scenario (BAU), GHG emissions from China's food consumption side are projected to be 965 million tonnes of CO2 equivalent (Mt CO2 eq) by 2060, similar to the current level. Domestically, ruminant production accounts for a substantial 44% of total consumption-based emissions. Meanwhile, livestock-related methane emissions take prominence in terms of different gas categories, comprising a significant 45%. Virtual GHG emissions import is expected to decrease due to the deceleration of land use change, while the GHG emissions attributable to livestock product imports are projected to incrementally rise, eventually constituting 17.2% of the total food consumption-based emissions. Striving for food self-sufficiency (SS scenario) offers a pathway to diminishing China's food system GHG emissions and virtually imported emissions by 6% and 43%, respectively. However, this scenario presents an increase of domestic emissions by 2% and simultaneously poses challenges to domestic land use and other related indicators. Maintaining basic food self-sufficiency, and reducing calorie intake from animal sources and improving production practices contribute to a 216 Mt CO2eq reduction of total GHG emissions. This approach not only holds promise for emission reduction but also brings broader benefits such as decreased agricultural commodity prices (by -28%), reduced nitrogen fertilizer uses (by -13%), diminished agricultural land requirement (by -10%), and only 2% decline in per capita calorie intake. Our study reconciles GHG mitigation strategies and food security within China's food system, thereby contributing significantly to global sustainable development.

How to cite: Zhao, H., Zhang, H., Havlik, P., and Chang, J.: Balancing food system greenhouse gas emissions reduction and food security in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5637, https://doi.org/10.5194/egusphere-egu24-5637, 2024.

17:15–17:25
|
EGU24-11353
|
ECS
|
On-site presentation
Ilia Alomia, Yessenia Montes, Rose Paque, Jean Dixon, Armando Molina, and Veerle Vanacker

Small tropical islands in the Pacific Ocean are highly vulnerable to climate change. Nature-based solutions can help local communities adapt their local agricultural systems. Through a comparative analysis, we evaluated the effects of agroforestry management practices on soil temperature, soil water availability and storage, and carbon stocks in Santa Cruz Island (Galapagos Archipelago). We installed six monitoring sites that consist of two replicates per agroforestry management practices: (i) conservation of native forest, (ii) traditional agroforestry, and (iii) abandoned farmland in passive restoration. After pedological characterization of the sites, the soil physicochemical and hydrological properties were determined in the laboratory. Over 30 months (July 2019 to December 2021), the environmental sensors captured the hydrometeorological and soil physical and hydrological properties of the sites. This was done by a dense network of rain gauges, air temperature and relative humidity sensors, and time-domain reflectance probes that registered volumetric water content and soil temperature.

We measured differences in soil temperature, moisture availability and soil organic carbon content between soils under forest, traditional agroforestry and passive restoration. Forest soils are protected from direct solar radiation, and trees keep the soil 12% cooler than soils converted to agricultural land. Soil moisture is 20% higher under forest than under traditional agroforestry or abandoned farmland, and forest soils have a lower dry bulk density, lower saturated hydraulic conductivity and higher water retention capacity. The forests and sites under passive restoration store more than 377 Mg C. ha-1 (1 m depth), about 50% more than under traditional agroforestry. The study shows that conserving forest patches in an agricultural landscape might be a promising strategy to mitigate increasing soil temperatures, agricultural drought, and decline in soil organic carbon content. However, more studies on landscape scale are needed to corroborate those results.

How to cite: Alomia, I., Montes, Y., Paque, R., Dixon, J., Molina, A., and Vanacker, V.: Agroforestry management practices as nature-based solutions for climate change adaptation in the Galapagos Islands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11353, https://doi.org/10.5194/egusphere-egu24-11353, 2024.

17:25–17:35
|
EGU24-22485
|
Highlight
|
On-site presentation
Future food systems compatible with agricultural boundaries for biodiversity
(withdrawn)
Remi Prudhomme, Patrice Dumas, Pierre-Marie Aubert, and Diego Garci-Vega
17:35–17:45
|
EGU24-4136
|
ECS
|
Highlight
|
On-site presentation
Kaixuan Wang, Lirong Liu, Jonathan Chenoweth, and Stephen Morse

The United Kingdom (UK), a high consumer of meat, has traditionally relied heavily on the European Union for its meat imports. However, with the advent of Brexit, the UK now faces the imperative of identifying potential meat-importing nations. The choices of different meat import countries not only impact the economy and environment of the UK but also other countries around the world. This study builds the UK Meat Trade-centred World Input-Output Model (UK-MTWIO), incorporating diverse import data within various scenarios. With different scenarios considering costs, GHG emission and animal welfare, this study analyzes the economic, environmental and animal welfare impacts on the UK and other countries worldwide. The novelty involves the comprehensive consideration of scenario setting, the application of RAS method as well as the animal welfare analysis with the method of world input-output model. The study reveals that beef imports have the most significant impact on the imports of the lamb and pork. Meanwhile, the changes in the UK's meat trade may change the trade partners of some major meat-importing countries. In terms of environment, some import scenarios have the potential to contribute to GHG emissions reduction in the global agricultural sector: CHN, MEX, and JPN are typical countries that are significantly impacted. The results of this study provides valuable insights for policymakers making meat trade decisions post-Brexit.

How to cite: Wang, K., Liu, L., Chenoweth, J., and Morse, S.: The economic and environmental impacts of UK meat imports post-Brexit, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4136, https://doi.org/10.5194/egusphere-egu24-4136, 2024.

17:45–17:55
|
EGU24-1491
|
ECS
|
On-site presentation
Lia Rapella, Philippe Drobinski, and Davide Faranda

Renewable energies (REs) are increasingly important in addressing the challenge of climate change. Their development and widespread use can significantly reduce greenhouse gas emissions from fossil fuels and help mitigate the effects of climate change. To achieve a "net-zero" carbon economy, the transition to a RE system must occur alongside a profound transformation of the agri-food sector. Agrivoltaics (AVs) offers an opportunity to achieve both of these goals simultaneously. AVs provides clean energy and it is an important tool for realizing a sustainable and circular food economy in rural and farming communities. Additionally, by placing photovoltaic (PV) panels over crop fields, AVs can avoid the competition between solar energy and agriculture for land-use. This can also help to mitigate the impact of climate change on crop productivity, which is expected to be negatively affected by a warmer and drier future climate.
In our study, we developed a large-scale sub-grid AVs model to explore the inter-links between climate, the AVs system, and crops. This model enables a comprehensive evaluation of the effectiveness and efficiency of an AVs configuration within the context of the climate-water-energy-food nexus. Our approach involves coupling a PV model with the soil-vegetation-atmosphere-transfer model ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) to construct the AVs module. The PV layer simulates the effects of PV panels, altering solar radiation and wind speed taken from atmospheric forcings. Subsequently, these altered variables, along with other key atmospheric variables like air temperature and precipitation required by ORCHIDEE, are used as inputs to the hydro-vegetation layer. Leveraging ORCHIDEE capability to quantify terrestrial water and energy balances at the land surface, this integration allows for a comprehensive simulation of crop ecosystem behavior within an AVs system. Net Primary Production (NPP), Water Use Efficiency (WUE), and PV power potential (PVpot) are finally computed as ultimate outputs of our model, representing key indicators for the water-energy-food nexus. Focusing on the Iberian Peninsula and the Netherlands, we apply our model to assess three AVs configurations (fix-tilted array, sun tracking, sun antitracking) across three specific years (2015, 2018, 2020) for two types of crops. Specifically, we compare the performance of different configurations among themselves and against the situation without AVs systems to analyze different behaviors depending on climate conditions, crop type, and location and to explore the potential benefits of the AVs systems.

How to cite: Rapella, L., Drobinski, P., and Faranda, D.: Modelling Agrivoltaics in a climate perspective for water-energy-food nexus analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1491, https://doi.org/10.5194/egusphere-egu24-1491, 2024.

17:55–18:00

Posters on site: Fri, 19 Apr, 16:15–18:00 | Hall X4

Display time: Fri, 19 Apr 14:00–Fri, 19 Apr 18:00
Chairpersons: Marta Tuninetti, Carole Dalin
X4.87
|
EGU24-9881
|
ECS
Blanca Cuevas, Elena Pascual, Carlota Bernal, and Sergio Zubelzu

Soil hydrophysical properties can be very spatially and temporally heterogeneous even in small areas. Due to this spatial and temporal variability, it is impossible to obtain real data for each point of interest. Therefore, the possibility to obtain the optimal estimated value, at any desired point, is decisive. The aim is to evaluate different methods to minimise the error made in this measurement.

Two basins were selected in the Autonomous Community of Madrid (Spain), where hydraulic conductivity data were taken at different points. All sampling point in both basins were georeferenced. For each basing different interpolation methods were tested. The methods used are Spline, Inverse Distance Weighted Interpolation (IDW), Kriging, and Thiessen Polygons. With the help of the Matlab program, the values for each method were obtained. Finally, the error is used for the analysis.

Differences among the obtained data by each method are expected to be found. In addition to the differences between the number of samples and the error, and the location in the basin of the samples.

In conclusion, it is hoped to find the most appropriate method for obtaining a value as close to reality as possible. Furthermore, it is expected to be able to use this methodology in other situations.

Acknowledgements: This research Project has been funded by the Comunidad de Madrid through the call Research Grants for Young Investigators from Universidad Politécnica de Madrid

How to cite: Cuevas, B., Pascual, E., Bernal, C., and Zubelzu, S.: Comparison of different interpolation techniques for sub-basins located in Madrid., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9881, https://doi.org/10.5194/egusphere-egu24-9881, 2024.

X4.88
|
EGU24-1481
|
ECS
Nick Kupfer, Carsten Montzka, and Tuan Quoc Vo

In Vietnam, conventional rice cultivation is under strong economic and ecological pressure. Against this backdrop, there is a rising demand for organic products both domestically and globally. In response, OrganoRice aims to facilitate the transition to organic farming in the model provinces of Vinh Long, Dong Thap, and An Giang in the Mekong Delta through a collaborative effort between German and Vietnamese partners. The initiative encompasses not only addressing physical challenges such as soil and water pollution reduction, optimal fertilization, and ecological plant protection but also delves into critical socio-economic dimensions, including enhancing the income of rice farmers and product marketing. The project acknowledges the intricate task of integrating cultural identity and individual farmers into the social fabric of the village community as a crucial factor for success in the conversion process. Direct communication with the rural population is prioritized, and key local stakeholders and scientific institutions, such as Can Tho University, play pivotal roles in ensuring the project's sustainable success.

The Mekong Delta's agricultural landscape is being explored through advanced tools such as remote sensing and hydrological simulations to map, predict, and optimize crop types, agricultural practices (both conventional and organic), and irrigation water pathways. Leveraging European Copernicus satellites Sentinel-1 and Sentinel-2, alongside PlanetScope equipped with radar and multispectral sensors, allows for monitoring plant growth conditions at a high spatial resolution. The analytical process involves examining remotely sensed data through phenological metrics, quantile mapping, and Fourier transform, complemented by conceptual simulations of irrigation flow paths. The initial phase comprises a comprehensive high-resolution time-series analysis of land use and land cover (LULC) dynamics to identify all potential LULCs influencing organic rice farming. Subsequently, irrigation flow path modeling is employed to estimate complex water dependencies. Ultimately, data fusion of LULC and irrigation analysis, combined with crop-specific pesticide data, results in an opportunity map highlighting suitable areas for organic rice farming. This interdisciplinary approach underscores the importance of integrating technological advancements with socio-economic considerations for a comprehensive and sustainable organic farming transition in the Mekong Delta.

How to cite: Kupfer, N., Montzka, C., and Quoc Vo, T.: Overcoming Barriers to Sustainable Rice Production: A Remote Sensing-Enabled Approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1481, https://doi.org/10.5194/egusphere-egu24-1481, 2024.

X4.89
|
EGU24-16795
|
ECS
|
Highlight
|
Francesco Semeria, Giacomo Falchetta, Adriano Vinca, Francesco Laio, Luca Ridolfi, and Marta Tuninetti

Over the last decade, a combination of economic uncertainty, supply shocks, and extreme climate events has led to a renewed prevalence of undernourishment, posing a serious threat to the realization of the Zero Hunger Sustainable Development Goal. Future scenarios are likely to be even more challenging to its accomplishment, based on projected trends of population growth and human-induced climate change impacts. There is urgent need for the development and implementation of sustainable transformation pathways to make agri-food systems worldwide more resilient and capable to sustain these pressures. These pathways should include a wide range of actions, targeting all stages of the value chain. Reducing food loss and waste (FLW), which currently accounts for approximately one-third of the food produced, is considered among those with the largest potential, with significant environmental co-benefits on the Water-Energy-Food-Ecosystem Nexus. The presence of complex and tele-coupled trade networks however, together with the lack of robust and granular datasets, make it difficult for researchers to run detailed analyses on this issue.

In this work we estimate the FLW associated to the consumption of a wide range of staple crops globally, disaggregating between the single food commodities and the different stages of the value chain. Moreover, we investigate the associated impacts on the water, land, and energy resources. The methodology applied allows us to trace the environmental impacts from the countries of production and manufacturing, where resources have been used, to the countries of consumption (from farm to fork) and backwards (from fork to farm), offering a dual perspective on the complex system. Our preliminary results show that over 20% of the quantities cultivated are wasted through FLW, globally. Transnational flows of FLW – and of associated virtual resources – compose a vast multi-layered network involving most of the countries worldwide. Differentiated impacts are observed, depending on the countries’ role in the network: while large exporters bear substantial impacts of FLW occurring abroad on their resources, net-importing nations transfer large portions of the environmental effects of the FLW associated with their consumptions onto foreign stocks. The ability to discern between the single food commodities, without aggregating primary and derived products, increases the level of specificity from past research. This detailed data is valuable for informing public policies, providing a more fine-grained approach to prioritize efforts in reducing FLW and its associated impacts.

How to cite: Semeria, F., Falchetta, G., Vinca, A., Laio, F., Ridolfi, L., and Tuninetti, M.: Food loss & waste of staple crop products: mapping environmental impacts within the Nexus paradigm, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16795, https://doi.org/10.5194/egusphere-egu24-16795, 2024.

X4.90
|
EGU24-21831
|
ECS
Multi-sensor analysis of variability in rice transplanting dates in smallholder rice production systems in South Asia
(withdrawn)
Pauline Kimani, Timothy Foster, Ben Parkes, Shu Kee Lam, and Alexis Pang
X4.91
|
EGU24-14721
Ioannis Manariotis, Styliani Biliani, Maria Varvara Manarioti, and Nikolaos Athanassolpoulos

Within the European Union, approximately 129 Mtons of food waste were generated in 2011, and about 52% of them derived from post-processing activities. The most common by-products originated from the food industry are spent coffee grounds, sugar cane waste, and fruit peels, while the main agricultural wastes are livestock slurry, manure, crop residue, and woodland pruning and maintenance wastes. The olive tree is cultivated worldwide, and more than 90% of the cultivated area is located in the Mediterranean basin. The olive oil extraction is carried out using two- or three-phase centrifuge systems. The olive mill wastes can be incorporated into the diets of productive animals, especially ruminants, due to their high fiber content. The aim of this work was to investigate the optimum conditions for silage production for animal food using olive oil wastes from a diphasic olive mill facility. Olive mill waste and straw were the base materials for silage composition: 53 to 55% and 45 to 47%, respectively (dry weight basis). Different mass ratios of molasse (0 to 4%) and urea (0 to 1%) per olive mill mass (dry weight) were used. The presence of urea and the absence of molasses turned out to be inhibitory factors for the silage process. The highest molasses rates the highest efficiency of silage production.

How to cite: Manariotis, I., Biliani, S., Manarioti, M. V., and Athanassolpoulos, N.: Silage  production from olive mil wastes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14721, https://doi.org/10.5194/egusphere-egu24-14721, 2024.

X4.92
|
EGU24-18099
|
ECS
|
Chih-Kang Chen and Ching-Pin Tung

Life Cycle Assessment (LCA) is a systematic approach used to evaluate the environmental impacts of products, services, or activities throughout their life cycle, from raw material acquisition and production to use and final disposal or recycling stages. The goal of LCA is to comprehensively assess environmental impacts across the entire life cycle, including energy consumption, greenhouse gas emissions, water and land use, and more. The execution of LCA primarily involves four stages: "goal and scope definition," "life cycle inventory," "life cycle impact assessment," and "life cycle interpretation." This method helps identify and improve environmental hotspots in products or activities, aiming to reduce adverse impacts on the environment.

This study references the "Packaging Lunch Box Product Category Rules" published by the Environmental Protection Administration of the Executive Yuan in Taiwan. Using a vegetarian lunch box manufacturer in Taiwan as a data source, a "Vegetarian Lunch Box Carbon Footprint Calculation Tool" was developed using SimaPro. Users can input first-tier data for each stage of the product life cycle (such as raw material input, energy, transportation distance, and output products), enabling the calculation of the carbon footprint of the vegetarian lunch box.

However, during the "life cycle interpretation" stage, this study found that the "raw material acquisition stage" contributes 80% of the carbon footprint throughout the entire life cycle of the vegetarian lunch box. This indicates significant negative environmental impacts during the "agricultural production" process. As a result, the study traces the environmental impacts of upstream agricultural production processes for grains and vegetables and proposes an improvement strategy: regenerative agriculture.

Regenerative agriculture practices include protective tillage to reduce physical soil disturbance, increasing biodiversity in fields, cover cropping to enhance soil carbon and prevent erosion, crop rotation for balanced soil nutrient use, and refraining from using chemical fertilizers and pesticides. The goal of regenerative agriculture is to sequester carbon in the soil and above-ground biomass, reducing greenhouse gas emissions, increasing crop yields, enhancing resilience to unstable climates, and improving the health and vitality of rural communities.

This study will also employ the life cycle assessment method to collect inputs and outputs for both conventional farming practices and regenerative agriculture, comparing their environmental impacts.

How to cite: Chen, C.-K. and Tung, C.-P.: Application of Life Cycle Assessment in Vegetarian Lunch Box: Environmental Impact Hotspot Analysis of Whole Grain and Vegetable Production, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18099, https://doi.org/10.5194/egusphere-egu24-18099, 2024.

X4.93
|
EGU24-20605
|
ECS
Jihye Jeong, Kerstin Jantke, and Uwe. A Schneider
  • Motivation, problem statement and aim

Cowpea is an important source of protein in the semiarid parts of sub-Saharan Africa. Even under water or temperature stress, cowpea can produce grain and fix nitrogen. The robustness of cowpea makes them a good choice especially for smallholder farmers with limited resource. Inoculated cowpea is not only more resilient against many plant diseases, but also can fix nitrogen more effectively.

Located in sub-Saharan region, water supply is a constant struggle of Namibia. In addition, due to dry climate and soil characters, only 1% of the country is arable. In contrast to harsh natural condition, over 70% of population depends their livelihoods on agriculture. For insufficient production, food supply in Namibia is highly dependent on imports. This combination of natural and societal condition puts Namibian population into nutrition hazard.

Thereby, the study aims to investigate the potential of cowpea inoculation in Namibia by answering the following questions:

1) How much can inoculation increase cowpea production in Namibia?

2) How much land and water resource can be saved by introducing inoculation in cowpea cultivation?

  • Methodology

Environment Policy and Integrated Climate (EPIC) model is adopted for crop simulation. It is calibrated specifically to the Namibian agricultural environment. Different climate scenarios and agricultural management systems are simulated in EPIC. The simulation result is used in optimisation modelling using General Algebraic Modelling System (GAMS). The model is simulated under objective of maximum food production given the current population.

  • Result

Primarily, potential cowpea production is depicted in both inoculated and non-inoculated scenarios. The simulation considers the total arable land of the country and subsistence farming as the only farming management. Cowpea production increases by 26% with inoculation.

The land and water use of inoculated cowpea cultivation is shown in relative to non-inoculated cowpea cultivation. In the perspective of current resource availability, the relative resource use is elaborated. Inoculation saves up to 23% of land and 79% of water use.

  • Conclusion

By introducing inoculation in cowpea cultivation, Namibia is expected to have meaningful increase in production and decrease in both land and water use. Since cowpea is already well integrated in smallholder farmers’ practice, the adoption of inoculation can penetrate the positive effects into remote and vulnerable areas.

How to cite: Jeong, J., Jantke, K., and Schneider, Uwe. A.: Exploring the potential of cowpea inoculation in Namibia for improved resource use and human nutrition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20605, https://doi.org/10.5194/egusphere-egu24-20605, 2024.

Posters virtual: Fri, 19 Apr, 14:00–15:45 | vHall X4

Display time: Fri, 19 Apr 08:30–Fri, 19 Apr 18:00
Chairpersons: Irene Blanco-Gutiérrez, Alvar Escriva-Bou
vX4.33
|
EGU24-605
|
ECS
Cintya Villacorta Ranera, Irene Blanco Gutiérrez, and Paula Novo Nunez

Water scarcity due to climate change and increased water demands is driving the use of non-conventional water sources, including reclaimed water, particularly in agriculture. In many EU countries affected by droughts, reclaimed water has become an important component of the overall water mix. For example, in Spain, Europe’s most arid country, reclaimed water is 560 hm3/year (nearly 10% of the treated wastewater).

The use of reclaimed water has many advantages, but it also faces significant barriers. The lack of social acceptance has been described as one of the major obstacles. However, understanding how different stakeholders perceive the use of reclaimed water has not been addressed in depth the literature so far. Existing studies are scarce and fragmented. They focus on a single type of stakeholder (farmers or consumers), ignoring the perceptions and eventual acceptance of different stakeholder groups directly or indirectly impacted by reclaimed water.

This study attempts to fill this gap by exploring the plurality of perspectives on the use of reclaimed water for irrigation in Spain. To do so, we applied Q-methodology and conducted twenty-three interviews with key stakeholders, including representatives of public administration, environmental groups, farmer associations, food retailers, consumer organizations, water treatment companies and water reuse experts. As part of the Q study, stakeholders were asked to sort according to their level of relative agreement 36 statements related to different socio-economic, technical, environmental, institutional and political aspects of reclaimed water. The results were analysed using principal component analysis in R ('qmethod' package).

Our study found three discourses: 1- Reclaimed water is a guarantee for water supply in agriculture, 2- Reclaimed water has the potential to be a sustainable water resource and 3- Reclaimed water has a negative impact on the environment. These discourses show different ways of understanding reclaimed water. Although stakeholders had diverse perceptions, there is a certain agreement that the public administration has the will to promote the use of reclaimed water and therefore it is key to promote reclamation projects in agriculture.

They also agree that most consumers are not informed about the quality of reclaimed water and its benefits in the agricultural sector, which leads to a certain social reluctance to use it, and to avoid this, awareness campaigns would be necessary to increase the social acceptance of reclaimed water.

Therefore, some discourses conclude that it is possible that reclaimed water may have pollution problems, but it is also true that the potential for improvement in reclamation technology can avoid them. Regarding the reduction of ecological flows, it is important to study this on a case-by-case basis, as this problem tends to occur in inland areas, although not always.

Finally, the question of who should pay for water regeneration is very controversial and the best solution is to share the costs between the different stakeholders, with the purification and reclamation being carried out tipping fee, and the farmers, with the help of the administration, bearing the costs of the infrastructure and controls from WWTP.

How to cite: Villacorta Ranera, C., Blanco Gutiérrez, I., and Novo Nunez, P.: Disentangling social perspectives on the use of reclaimed water in agriculture using Q methodology, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-605, https://doi.org/10.5194/egusphere-egu24-605, 2024.

vX4.34
|
EGU24-3533
|
Highlight
Paloma Esteve, Irene Blanco-Gutiérrez, Marina RL Mautner, Samaneh Seifollahi-Aghmiuni, and Marisa Escobar

Growing pressure on water resources and climate uncertainty are driving the need for alternative water sources. In countries with severe water stress, such as Spain, the reuse of water from urban wastewater treatment plants has become a promising opportunity to secure and improve agricultural production. The use of reclaimed water in agriculture offers many significant economic and the environment benefits. In addition to preserving freshwaters, it increases the reliability of water supplies and provides a source of nutrients needed for crop growth and soil fertility. In recent years, the European Union and the Spanish government have promoted the reuse of reclaimed water for irrigation as part of their circular economy strategies. However, the uptake of this practice is still limited and so far deployed below its potential.

This study uses a hydro-economic model to investigate the potential for reclaimed water reuse in agriculture and effective water resource management in the Western La Mancha aquifer in Spain. In this region, groundwater abstraction for irrigation exceeds aquifer recharge, leading to conflicts between rural socio-economic development and water conservation. In this context, reclaimed water reuse is seen as an alternative source to groundwater that can contribute to reduce over-exploitation. An economic optimization model is linked to the hydrology model WEAP (Water Evaluation And Planning system) to analyse management alternatives, that include full compliance with the current water abstraction regime and different levels of reclaimed water reuse from the region’s urban wastewater treatment plants (current level and full potential). Climate uncertainty is also simulated and represented by projected precipitation and temperature changes from a selection of global climate models under different representative concentration pathways (4.5 and 8.5).

The results show that compliance with the abstraction regime can help to mitigate aquifer overexploitation. Reclaimed water reuse represents an additional effort for aquifer recovery, resulting in improved groundwater storage levels. Its effect is particularly relevant under climate change scenarios, although groundwater levels would show a downward trend. However, reusing reclaimed water for irrigation reduces effluent flows to rivers and has a negative impact on meeting the environmental needs of downstream wetlands. At the same time, water reuse could mitigate the negative impact of water scarcity on farm incomes, especially in municipalities with high-capacity treatment plants (> 1Mm3/year) where high value crops (vineyards, olives and horticultural crops) are grown. 

Overall, this research evidence uneven impacts of reclaimed water reuse across the basin. Its contribution to reversing groundwater depletion is limited and should be understood as part of the solution, but not as the solution itself. Our results provide valuable insights into the economic and environmental implications of reclaimed water reuse and can support policy decisions for the adoption of such alternatives for integrated and sustainable water resource management in semi-arid regions.

How to cite: Esteve, P., Blanco-Gutiérrez, I., Mautner, M. R., Seifollahi-Aghmiuni, S., and Escobar, M.: Challenges and opportunities of using reclaimed water for agricultural irrigation in Spain: A hydro-economic analysis. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3533, https://doi.org/10.5194/egusphere-egu24-3533, 2024.

vX4.35
|
EGU24-2856
|
ECS
|
Highlight
Ayat-Allah Bouramdane

The escalating threat of water scarcity presents a dual challenge to both food production and water-related systems. The degradation of conventional water resources (e.g., surface water and ground water), coupled with insufficient investment in infrastructure, has compelled the water sector to seek alternative sources such as Non-Conventional Water Resources (NCW), encompassing reclaimed water reuse and desalination of brackish and seawater, as a long-term strategy, particularly in arid and semi-arid environments where irrigation is a vital component.
Recognizing the substantial potential of NCWs, this research presents the outcomes of an extensive study [1]. The study adopts a multidisciplinary approach, specifically employing Multi-Criteria Decision Making (MCDM), to assess the effectiveness of smart city water management strategies within the framework of NCWs. Utilizing representative criteria, our analysis involves objective judgment, assigns weights through the Analytic Hierarchy Process (AHP), and scores strategies based on their adherence to these criteria.
Our findings underscore the pivotal role of the "Effectiveness and Risk Management" criterion, carrying the highest weight at 15.28%, in shaping strategy evaluation and ensuring robustness. Criteria with medium weight include "Resource Efficiency, Equity, and Social Considerations" (10.44%), "Integration with Existing Systems, Technological Feasibility, and Ease of Implementation" (10.10%), and "Environmental Impact" (9.84%), focusing on ecological mitigation. Recognizing the importance of community engagement, "Community Engagement and Public Acceptance" (9.79%) is highlighted, while "Scalability and Adaptability" (9.35%) address the dynamics of changing conditions. Balancing financial and governance concerns are "Return on Investment" (9.07%) and "Regulatory and Policy Alignment" (8.8%). Two low-weight criteria, "Data Reliability" (8.78%) and "Long-Term Sustainability" (8.55%), emphasize data accuracy and sustainability.
Strategies with higher weights, such as "Smart Metering and Monitoring, Demand Management, Behavior Change," and "Smart Irrigation Systems," prove highly effective in enhancing water management in smart cities. Notably, medium-weighted strategies (e.g., "Educational Campaigns and Public Awareness," "Policy and Regulation," "Rainwater Harvesting," "Offshore Floating Photovoltaic Systems," "Collaboration and Partnerships," "Graywater Recycling and Reuse," and "Distributed Water Infrastructure") and low-weighted strategies (e.g., "Water Desalination") also contribute significantly, allowing for customization based on each smart city's unique context.
This research is of significance as it addresses the complexity of urban water resource management, offering a multi-criteria approach that enhances traditional single-focused methods. It comprehensively evaluates water strategies in smart cities and provides a criteria-weight-based resource allocation framework for sustainable decision-making, thereby boosting smart city resilience. It is essential to acknowledge that results may vary depending on specific smart city needs and constraints. Future studies are encouraged to explore factors such as climate change's impact on water management in smart cities and consider alternative MCDM methods like Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) or Elimination and Choice Expressing the Reality (ELECTRE) for strategy evaluation.

[1] Bouramdane, A.-A., Optimal Water Management Strategies: Paving the Way for Sustainability in Smart Cities. Smart Cities 2023, 6, 2849–2882. https://doi.org/10.3390/smartcities6050128

 

 

How to cite: Bouramdane, A.-A.: Sustainable Management Strategies for Non-Conventional Water Resources: Enhancing Food and Water Security in Arid and Semi-Arid Regions , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2856, https://doi.org/10.5194/egusphere-egu24-2856, 2024.