EGU24-18191, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-18191
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technological and conceptual tools for risk communication during the different phases of disaster risk management of natural and human-made hazards

Chrysoula Papathanasiou1, Femke Mulder2, Maureen Fordham2, Lazaros Karagiannidis1, and Angelos Amditis1
Chrysoula Papathanasiou et al.
  • 1Institute of Communications and Computer Systems (ICCS), Greece (c.papathanasiou@iccs.gr, lkaragiannidis@iccs.gr, a.amditis@iccs.gr)
  • 2University College London, Institute for Risk and Disaster Reduction, London, UK (f.mulder@ucl.ac.uk, m.fordham@ucl.ac.uk)

Risk mitigation for natural and human-made hazards hinges on effective two-way communication between Civil Protection Authorities (CPAs) and the at-risk population. This work focuses on identifying the timing and methods of this communication. Effective communication is shaped by the information that is available, like forecast lead times and hazard observations, and the technical and conceptual tools that support it. It also requires that CPAs communicate with citizens at all stages of the disaster management cycle: before a hazard event (prevention and preparedness), during a hazard event (response), and after a hazard event (recovery and learning from the event). This is applicable to all hazard types. For efficient risk communication, the best approach is an integrated one, combining cutting-edge technology with targeted conceptual tools. Both were developed and tested in the RiskPACC project (www.riskpacc.eu). A notable innovation in RiskPACC is the active involvement of both CPAs and citizens in tool development, through co-creation and co-development activities that aid in tool design and finalization (Papathanasiou et al., 2023b). RiskPACC's conceptual framework focuses on facilitating effective two-way communication between CPAs and citizens. It provides guidance on building relationships for risk reduction and co-developing communication strategies, based on a shared understanding of local risks. This is supported by a resource repository and good practices, like participatory mapping. An example of a co-developed technology within RiskPACC is the Aeolian AR mobile app (Papathanasiou et al., 2023a), covering all disaster risk management phases and enabling bidirectional communication between citizens and CPAs.

Acknowledgments:

This research has been financed by European Unions’ Horizon 2020 research and innovation programme under Grant Agreement No 101019707, project RiskPACC (Integrating Risk Perception and Action to enhance Civil protection-Citizen interaction).

 

References:

Papathanasiou, Chrysoula; Sampson, Orestis; Douklias, Thanasis; Karagiannidis, Lazaros; Michalis, Panagiotis and Amditis, Angelos (2023).  Evolution of an ICT tool through co-creation for effective disaster risk management. SafeGreece 2023, Athens Greece, 25-27 September 2023. Retrievable at https://safegreece.org/safeattica2023/images/docs/safeattica2023_proceedings.pdf.

Papathanasiou, Chrysoula; Michalis, Panagiotis; Stavrou, Konstantinos; Tsougiannis, Evangelos; Anniés, Jeannette; Papageorgiou, Sofia; Ouzounoglou, Eleftherios; Amditis, Angelos (2023). Enhancement of local community resilience to natural and man-made disasters through the application of co-created novel technological tools. EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-1381. Retrievable at https://doi.org/10.5194/egusphere-egu23-1381.

How to cite: Papathanasiou, C., Mulder, F., Fordham, M., Karagiannidis, L., and Amditis, A.: Technological and conceptual tools for risk communication during the different phases of disaster risk management of natural and human-made hazards, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18191, https://doi.org/10.5194/egusphere-egu24-18191, 2024.