EGU24-18850, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-18850
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Testing the climate-niche paradigm for species extinction risk

Claus Sarnighausen1,2, Maximilian Kotz2, Leonie Wenz2, and Sanam Vardag1
Claus Sarnighausen et al.
  • 1Institute of Environmental Physics, University of Heidelberg, 69120 Heidelberg, Germany (claussar@pik-potsdam.de)
  • 2Department of Complexity Science, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany

The increasing relevance of climate change as a threat of species extinction is a pressing concern, as highlighted by the recent IUCN Red List accessment for amphibians (Luedtke et al., 2023). Despite the reported threats of climate change, measuring its influence across species remains complex and lacking the appropiate tools (Cazalis et al., 2022). Changes in "climate niche", referring to the environmental conditions necessary for a species to thrive, have long been discussed and used to predict species distributions and extinctions. Here, we utilize the recently available Red List classifications to test this paradigm within state-of-the-art predictive models of comparative extinction risk. Using historical weather data from the ERA-5 reanalysis, we explore the predictive significance of a wide range of potential definitions of climate niche exceedance. Extinction risk models have consistently identified geographic range size and human population density as important correlates to extinction risk. Also controling for factors such as habitat fragmentation, land use, human preassures, biogeographical realms and biological traits, we use a random forest model to predict the transitions between Red List categories for over 5.000 amphibian species and evaluate results against the official accessments. This approach tests the evidence base of the climate niche paradigm and evaluates its effectiveness as a tool for incorporating climate change into extinction risk models.


Luedtke, J.A., Chanson, J., Neam, K. et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622, 308–314 (2023). https://doi.org/10.1038/s41586-023-06578-4

Cazalis, V., Di Marco, M., Butchart, S. H. et al., Bridging the research-implementation gap in iucn red list assessments, Trends in Ecology & Evolution (2022).
https://doi.org/10.1016/j.tree.2021.12.002

How to cite: Sarnighausen, C., Kotz, M., Wenz, L., and Vardag, S.: Testing the climate-niche paradigm for species extinction risk, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18850, https://doi.org/10.5194/egusphere-egu24-18850, 2024.

OSPP voting tool

This contribution takes part in the OSPP contest. Please log in to see the relevant judging section.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 14 Apr 2024, no comments

Post a comment