Multidisciplinary laboratories to enhance engineering teaching in higher education
- Università degli Studi di Firenze, Department, Civil and Environmental Engineering, Firenze, Italy (enrica.caporali@unifi.it)
Nowadays, climate change and environmental deterioration are perceived as the most significant global challenges for Europe and the world. Therefore, it is necessary to develop appropriate strategies for a resource-efficient economy in order to adequately address the sustainability challenge. This is the background to the 'European Green Deal' (Fetting 2020), of the European Commission, which set out the roadmap for a sustainable EU economy, in which climate problems and environmental challenges are turned into opportunities and, without neglecting people and places, economic growth is separated from resource use. In this context, the strategic goal for Europe is to achieve zero climate impact for a number of countries in Europe by 2050 (IPCC 2022). This is the reason why it becomes extremely necessary to strengthen and improve professional skills in many areas of civil, building and environmental engineering.
With reference to the experience carried out at the University of Florence, Department of Civil and Environmental Engineering, in designing two new undergraduate curricula in “Environmental engineering” and “Civil and Building engineering for sustainability”, the implementation of multidisciplinary laboratories in the education path is discussed here. Multdisciplinary laboratories, focusing on disciplines that concern the development of an engineering career, allow the acquisition of know-how skills through the development of real projects covering different fields of Civil and Environmental engineering (e.g. green or seismic- resistant buildings design, stabilization of slope areas towards hydrogeological risks, etc.). Moreover, multidisciplinary laboratories can contribute to provide engineering study programs with a more relevant social-education component and with a greater focus on skills. Greater flexibility for students in the composition of their curricula, greater attention to multidisciplinary learning, increased students’ awareness of the impact of technologies on the socio-economic context, and greater attention to the acquisition of soft-skills, are also fostered. Multidisciplinary preparation is essential for responding to the needs expressed by the labour market and by a multiplicity of stakeholders and higher education.
Multidisciplinary laboratories are all located at the second and, mostly, at the third year of the study plan of both the two new undergraduate curricula, and they are focused on the most characterizing topics of the Degree Course and teachings with integrative and specific in-depth characteristics. Some laboratories are more focused on specific aspects of the environmental engineering (e.g., the Environmental Management Systems and Quality Management Laboratory, the Renewable Energy Laboratory, the Multi-risk Analysis Laboratory, the Natural and Anthropic Hazard Mitigation Laboratory) and other are focused on the main aspects related to civil and building engineering design with a specific attention to sustainability ( e.g. the Building Process Digitization Laboratory, the Sustainable Structures Design Laboratory, the Sustainable Infrastructures Design Laboratory, the Sustainable Buildings Design Laboratory and the Sustainable Construction Management Laboratory).
How to cite: Caporali, E., Facciorusso, J., and Gori, R.: Multidisciplinary laboratories to enhance engineering teaching in higher education, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19409, https://doi.org/10.5194/egusphere-egu24-19409, 2024.