EGU24-19837, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-19837
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Geodynamic Stratigraphy — Defining the Need for Mapping Strategies to link Models of Mantle Dynamics to Surface Processes on Geological Scales

Anke M. Friedrich
Anke M. Friedrich
  • Department of Earth and Environmental Sciences, Ludwig-Maximilans University of Munich (LMU), Munich, Germany

Geodynamicists have long proposed that mantle convection creates dynamic topography — a long-wavelength, low-amplitude signal extending beyond plate tectonics. This predicts transient vertical Earth surface movement of 1–2 km across thousands of horizontal kilometers at any location, including continental interiors. Despite these claims, experts working on local observations, using the multitude of high-resolution geological, sedimentological, and geomorphological data, face challenges in finding clear evidence to unequivocally support dynamic models of whole mantle convection, including the plume mode. Moreover, regional-scale stratigraphic techniques, such as sequence stratigraphy, which enabled hydrocarbon exploration, invoke unconformities on multiple scales but, from their far-field perspective, render correlation to distinct geodynamic events difficult.

To circumvent this scaling and correlation problem, I propose to reverse the stratigraphic perspective to an outwards-directed view. This approach requires a theoretical geodynamic framework and the identification of tectonic events (center, near field), such as magmatic arcs, flood basalts, or uplifted domes, followed by outward-directed geological mapping of regional-scale stratigraphic unconformities —predicted by theory— to distal regions. This approach is analogous to the way in which paleoseismologists examine so-called event horizons, i.e., unconformities in the stratigraphic record adjacent to fault scarps that preserve a record of the Earth's surface at the time of earthquake rupture.

This event-based stratigraphic mapping method (EVENT-STRAT) enables analysis of geological events on geological maps compiled at regional to continental scales. The technique connects local work into a continent-scale framework, allowing identification of transient patterns related to dynamic mantle-derived events. The EVENT-STRAT mapping method is designed to visualize geological effects resulting from both the plate and the plume mode of mantle convection. The toolbox consists of the hiatus mapping method (Friedrich 2019, Geological Magazine) and the event-based stratigraphic framework mapping (e.g., Friedrich et al. 2018, Gondwana Research). The upcoming EVENT-STRAT mapping method involves multiple polygonal stacking to analyze various stratigraphic event horizons, such as hiatus surfaces and unconformities. The most significant current challenge is to add the high-precision stratigraphic data compiled on local chronostratigraphic charts to continent-scale geological maps. This effort requires the attention of geological surveys on international scales seeking to compile theory-based geodynamic-stratigraphic parameters on the next generation of global and continent-scale geological maps.

How to cite: Friedrich, A. M.: Geodynamic Stratigraphy — Defining the Need for Mapping Strategies to link Models of Mantle Dynamics to Surface Processes on Geological Scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19837, https://doi.org/10.5194/egusphere-egu24-19837, 2024.