EGU24-20057, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-20057
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Aeolus Satellite: A Breath of Fresh Air for Climate Change Education

Panagiota Asimakopoulou1, Ioanna Tsikoudi2, Maria Tsichla2, Panagiotis Nastos1, Clara Cruz Niggebrugge3, Maurane Gisiger3, Thorsten Fehr3, and Tommaso Parrinello4
Panagiota Asimakopoulou et al.
  • 1National & Kapodistrian University of Athens, Institute of Geology and Geoenvironment, Department of Geography and Climatology, Athens, Greece (passimak@geol.uoa.gr)
  • 2National Observatory of Athens, IAASARS, Athens, Greece
  • 3European Space Agency, ESA/ESTEC, Noordwijk, Netherlands
  • 4European Space Agency, ESA/ESRIN, Frascati, Italy

The field of Earth Observation (EO) is perpetually evolving attaining remarkable advancements that improve our understanding of the underlying physical phenomena behind climate change. One of the latest EO advancements is the Aeolus mission of the European Space Agency (ESA). Aeolus is the first satellite to deploy a Doppler wind lidar instrument, utilising laser technology to accurately measure wind profiles. This innovation significantly improved weather forecasting, atmospheric modeling, and climate research, enabling better predictions of extreme weather events and advancing our knowledge of atmospheric circulation patterns.

By following the rapid advancements in Earth Observation (EO), climate change and sustainability education has a promising opportunity to capitalize on these developments for the mutual benefit of EO and climate literacy. In this context, we designed an innovative educational programme, the "AeolusEdu[1]", with the support of the ESA Education office and the Greek ESERO office. We implemented AeolusEdu during the Aeolus Science Conference in Rhodes (May 2023), which attracted 150 6th grade students from the 1st, 12th, and 13th Primary Schools of Rhodes.

Throughout the program, students were engaged in an interactive learning experience, delving into the factors influencing winds, understanding the underlying physical principles of atmospheric circulation, and exploring the "Doppler Wind Lidar" technology employed for space-based wind monitoring through thoughtfully designed hands-on experiments. Additionally, students were able to interact with both historic and  modern ground-based instruments used in wind monitoring. At the program's conclusion, students had the unique opportunity to meet some of the world’s leading space and  weather experts involved in the Aeolus mission and discuss, in a notably extended Q&A session, their work and the motivations driving their careers as scientists.

According to the feedback received from participating teachers and students and the overwhelming applause and farewell scientists received, AeolusEdu admittedly captivated students and ignited their curiosity for EO and Earth System Science (see relevant ESA article[2]). The implementation of AeolusEdu illustrated that young school students can not only comprehend the fundamental concepts and principles behind atmospheric circulation, extreme weather events, and groundbreaking satellite technology but also find them genuinely exciting. The success of the first AeolusEdu pilot programme inspires us for future development of freely available EO-based information material for all teachers.


[1] https://www.aeolus2023.org/education

[2] https://www.esa.int/Education/Students_blown_away_by_Aeolus 

 

 

How to cite: Asimakopoulou, P., Tsikoudi, I., Tsichla, M., Nastos, P., Cruz Niggebrugge, C., Gisiger, M., Fehr, T., and Parrinello, T.: Aeolus Satellite: A Breath of Fresh Air for Climate Change Education, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20057, https://doi.org/10.5194/egusphere-egu24-20057, 2024.