EGU24-2037, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-2037
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

An ensemble reconstruction of ocean temperature, salinity, and the Atlantic Meridional Overturning Circulation 1960–2021

Leon Hermanson, Nick Dunstone, Rosie Eade, and Doug Smith
Leon Hermanson et al.
  • Met Office, Exeter, United Kingdom of Great Britain – England, Scotland, Wales (leon.hermanson@metoffice.gov.uk)

Ocean reanalyses covering many decades, including those with few observations, are needed to understand climate variability and to initialize and assess interannual to decadal climate predictions. The Met Office Statistical Ocean Re-Analysis (MOSORA) exploits long-range covariances to generate full-depth reanalyses of monthly ocean temperature and salinity even from sparse observations. The latest version of MOSORA presented here is for the first time an ensemble that samples uncertainties in these long-range covariances. The ensemble is created by using initial covariances from different perturbed-physics historical model runs and these are then improved with observations using an iterative process.

We demonstrate that covariances are mostly improved by iteration, and that this procedure, using very sparse observations typical of the 1960s, captures many features of analyses benefiting from modern observation density. We investigate the ensemble spread and find that salinity trends in the covariances from model runs can introduce unexpected changes in the reanalyses. In the Gulf of Guinea, there are insufficient observations to constrain the model covariances, which vary due to different model representations of Antarctic Intermediate Water. If models are improved in this region, this could lead to a better analysis of temperature and salinity.

We nudge the reanalyses into an ensemble of coupled climate models to produce estimates of the Atlantic Meridional Overturning Circulation (AMOC) back to 1960. At 26°N, the AMOC shows decadal variability consistent with observations at this latitude and shows signs of strengthening in recent years. The ensemble spread in AMOC reconstructions at this latitude increases with time as more observations interact with uncertain covariances. More observations should be able to better constrain these covariances.

At 45°N, the amount of decadal variability in the AMOC varies between members. The uncertainty of our reconstruction at this latitude varies through time partly related to the number of observations made on the western boundary, just off the Grand Banks of Newfoundland. This shows potential for targeted and sustained observations to constrain the transport into the North Atlantic subpolar gyre.

How to cite: Hermanson, L., Dunstone, N., Eade, R., and Smith, D.: An ensemble reconstruction of ocean temperature, salinity, and the Atlantic Meridional Overturning Circulation 1960–2021, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2037, https://doi.org/10.5194/egusphere-egu24-2037, 2024.

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 15 Apr 2024, no comments