Simultaneous Onboard Analysis of Seawater Dissolved Inorganic Carbon (DIC) Concentration and Stable Isotope Ratio (δ13C-DIC)
- 1School of Marine Science and Policy, University of Delaware, Newark, DE 19716, USA
- 2Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
- 3Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, 4301 Rickenbacker Causeway, Miami, Florida 33149, USA
- 4Department Earth and Planetary Sciences, University of California Davis, Davis, CA 95616, USA
Dissolved inorganic carbon (DIC) concentration and stable carbon isotope value (δ13C-DIC) are valuable for studying aquatic carbon cycles. These parameters reveal significant geochemical insights, such as the discernible effect of ocean anthropogenic CO2 uptake, the primary control of surface δ13C-DIC distribution by photosynthesis and respiration against a meridionally variable air-sea equilibrium background, and the notable impact of terrestrial carbon inputs in estuarine environments. However, one cannot take full advantage of this coupled pair as only 15% or less of water samples during past ocean cruises and very few coastal ocean samples have been analyzed for δ13C-DIC as the traditional isotope analytical technology is labor-intensive and limited in shore-based laboratories. This study reports a rapid and cost-effective method based on Cavity Ring-Down Spectroscopy (CRDS) for automatically and simultaneously analyzing DIC concentration and δ13C-DIC on shipboard. Compared to traditional techniques, our analyzer is more portable and operational-friendly. We also prepared and preserved a set of stable in-house NaHCO3 standards for seawater δ13C-DIC calibration during long cruises. This work represents the first effort to collect a large dataset of δ13C-DIC onboard on any oceanic transect; here along the North American eastern ocean margins in summer 2022. We efficiently processed 30 samples daily per analyzer over a 40-day expedition with excellent on-site uncertainty of ±1.1 μmol kg-1 for the DIC concentration and ±0.03‰ for the δ13C-DIC value (1σ). The duplicates taken from varying depths demonstrated high consistency with average standard deviations of 1.6 μmol kg-1 for DIC concentrations ranging between 1900 and 2300 μmol kg-1 and 0.04‰ for δ13C-DIC from -0.5‰ to 1.8‰. The DIC concentration measurements of CRM displayed average discrepancies of 1.4±1.7 μmol kg-1 for Batch #188 and 1.0±1.1 μmol kg-1 for Batch #195 against certified values, indicating reliable accuracy. Our δ13C-DIC analysis of CRM from Batch #188 yielded an average of -0.20±0.04‰, closely matching the reference value of -0.19±0.02‰ obtained by Isotope Ratio Mass Spectrometry (IRMS). Consistent standard deviations for δ13C-DIC of CRM from Batch #188 (0.04‰, n = 36) and Batch #195 (0.03‰, n = 7) further affirmed the potential utility of CRM as a viable liquid standard for δ13C-DIC measurements in seawater. An interlaboratory comparison of DIC analysis with NOAA/AOML revealed an average offset of 2.0±3.8 μmol kg-1 between onboard CRDS measurements and Coulometry results. Moreover, the cross-validation of δ13C-DIC against historical deep-ocean data exhibited a mean difference of only -0.04±0.06‰, emphasizing the high quality of our data.
How to cite: Sun, Z., Li, X., Ouyang, Z., Li, Q., Featherstone, C., Atekwana, E., Hussain, N., Pan, Y., and Cai, W.-J.: Simultaneous Onboard Analysis of Seawater Dissolved Inorganic Carbon (DIC) Concentration and Stable Isotope Ratio (δ13C-DIC), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21082, https://doi.org/10.5194/egusphere-egu24-21082, 2024.