EGU24-21176, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-21176
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Monitoring volcanic areas through the IREA-CNR airborne SAR infrastructure

Antonio Natale1, Paolo Berardino1, Alessandro Di Vincenzo1, Carmen Esposito1, Riccardo Lanari1, and Stefano Perna2
Antonio Natale et al.
  • 1Institute for Electromagnetic Sensing of the Environment (IREA), National Research Council (CNR), Naples, Italy (natale.a@irea.cnr.it)
  • 2Department of Engineering, University of Naples “Parthenope”, Napoli, Italy (stefano.perna@irea.cnr.it)

This contribution is aimed at describing the airborne Synthetic Aperture Radar (SAR) infrastructure developed at the Institute for Electromagnetic Sensing of the Environment (IREA) - National Research Council of Italy (CNR), Naples, Italy.

The infrastructure consists of a flight and a ground segment.

Specifically, the flight segment includes an airborne SAR system, that is, the Multiband Interferometric and Polarimetric SAR (MIPS) sensor [1] owned by IREA-CNR. This is based on the Frequency Modulated Continuous Wave (FMCW) technology, operates at X- and L-band and it can be easily mounted onboard (and unmounted from) different types of aircrafts.

The ground segment includes an IT platform for data storage and processing, located at the IREA-CNR laboratories, and the airborne SAR data processing chain, jointly developed by IREA-CNR and University Parthenope, Naples, Italy [2]. Related to the infrastructure, there are also those activities carried out before and during the airborne campaign to guarantee the proper planning and the successful execution of the campaign itself.

To show the current capabilities of this infrastructure, in terms of characteristics of the final products as well as of the timely response in emergency scenarios, by way of example we present a case study relevant to a MIPS campaign carried out in the frame of the agreement between IREA-CNR and the Department of Civil Protection of the Presidency of the Council of Ministers. In particular, the considered case study has been picked up from a set of airborne SAR campaigns carried out from 2019 to 2022 with the aim of generating multi-temporal single-pass X-Band interferometric Digital Elevation Models of the Stromboli Volcano, in order to perform long-term analyses of the topographic changes related to its eruptive activity [3].

 

[1] A. Natale, P. Berardino, C. Esposito, G. Palmese, R. Lanari, and S. Perna, “The New Italian Airborne Multiband Interferometric and Polarimetric SAR (MIPS) System: First Flight Test Results,” Int. Geosci. Remote Sens. Symp., vol. 2022-July, pp. 4506–4509, 2022, doi: 10.1109/IGARSS46834.2022.9884189.

 

[2] P. Berardino, A. Natale, C. Esposito, R. Lanari, and S. Perna, “On the Time-Domain Airborne SAR Focusing in the Presence of Strong Azimuth Variations of the Squint Angle,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–18, 2023, doi: 10.1109/TGRS.2023.3289593.

 

[3] R. Lanari, C. Esposito, P. Berardino, A. Natale, G. Palmese, and S. Perna, “Stromboli volcano monitoring with airborne SAR systems,” in EGU General Assembly 2023, doi: https://doi.org/10.5194/egusphere-egu23-10047.

 

How to cite: Natale, A., Berardino, P., Di Vincenzo, A., Esposito, C., Lanari, R., and Perna, S.: Monitoring volcanic areas through the IREA-CNR airborne SAR infrastructure, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21176, https://doi.org/10.5194/egusphere-egu24-21176, 2024.